Add DAS multi-robot safety control

This commit is contained in:
2025-05-08 15:28:53 +02:00
parent 78b364582a
commit efdcacd418
4 changed files with 152 additions and 2 deletions

View File

@ -45,6 +45,9 @@
\def\s{{\vec{s}}}
\def\u{{\vec{u}}}
\def\D{\ensuremath{\mathcal{D}}}
\def\A{{\matr{A}}}
\def\w{{\vec{w}}}
\def\R{\ensuremath{\mathbb{R}}}
\begin{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -1,4 +1,4 @@
\chapter{Multi-robot safety controllers}
\chapter{Safety controllers}
\begin{description}
@ -126,7 +126,7 @@
\includegraphics[width=0.35\linewidth]{./img/safety_control_single.png}
\end{figure}
A control barrier function to solve the task can be:
A control barrier function to solve the task (i.e., rectify the trajectory of the high level controller) can be:
\[
V^s(\x) = \Vert \x - \x_\text{obs} \Vert^2 - \Delta^2
\qquad
@ -180,4 +180,151 @@
\[
X_i = \{ \x \in \mathbb{R}^d \mid \forall j \in \mathcal{N}_i: V_{i,j}^s(\x) \geq 0 \}
\]
The set of admissible controllers is:
\[
\begin{aligned}
\begin{aligned}
U^s(\x) = \Big\{ \u \in \mathbb{R}^{dN} \mid
-\nabla_{[\x_i]} V_{ij}^s(\x_i, \x_j)^T \u_i
- \nabla_{[\x_i]} V_{ji}^s(\x_j, \x_i)^T \u_j
- &\gamma(V_{ij}^{s}(\x_i, \x_j)) \leq 0 \\
&\forall j \in \mathcal{N}_i, \forall i \in \{1, \dots, N\} \Big\}
\end{aligned} \\
= \Big\{ \u \in \mathbb{R}^{dN} \mid -2(\x_i, \x_j)^T \u_i - 2(\x_j-\x_i)^T \u_j - \gamma(V_{ij}^s(\x_i, \x_j)) \leq 0 \,\,\forall j \in \mathcal{N}_i, \forall i \in \{1, \dots, N\} \Big\}
\end{aligned}
\]
% \[
% L_g V_{ij}^s(\x) = \nabla_{[\x_i]} V^s(\x_i, \x_j)^T \u_i + \nabla_{[\x_j]} V^s(\x_i, \x_j)^T \u_j
% \]
\end{description}
\begin{description}
\item[Centralized safety controller] \marginnote{Centralized safety controller}
The CBF-based policy can be obtained by solving:
\[
\begin{gathered}
\arg\min_{\u \in \mathbb{R}^N} \sum_{i=1}^{N} \Vert \u_i - \u_i^\text{ref} \Vert^2 \\
\begin{aligned}
\text{subject to }
&-2(\x_i, \x_j)^T \u_i - 2(\x_j-\x_i)^T \u_j - \gamma(V_{ij}^s(\x_i, \x_j)) \leq 0 \\
& \Vert \u_i \Vert \leq \u_i^\text{max} \\
& \forall j \in \mathcal{N}_i, \forall i \in \{ 1, \dots, N \}
\end{aligned}
\end{gathered}
\]
where $\u_i^\text{ref}$ is the reference input of the high level controller and $\u_i^\text{max}$ is the bound.
\begin{remark}
The policy should be computed continuously for each $x_i(t)$.
\end{remark}
\item[Decentralized safety controller] \marginnote{Decentralized safety controller}
The CBF-based policy can be obtained by solving a more constrained problem compared to the centralized formulation:
\[
\begin{gathered}
\arg\min_{\u_i \mathbb{R}^d} \Vert \u_i - \u_i^\text{ref} \Vert^2 \\
\begin{aligned}
\text{subject to } &- \nabla_{[\x_i]} V_{ij}^s(\x_i, \x_j)^T \u_i - \frac{1}{2} \gamma (V_{ij}^s(\x_i, \x_j)) \leq 0 \\
& \Vert \u_i \Vert \leq \u_i^\text{max} \\
& \forall j \in \mathcal{N}_i
\end{aligned}
\end{gathered}
\]
\begin{remark}
If $\forall i \in \{1, \dots, N\}: \nabla_{[\x_i]} V_{ij}^s(\x_i, \x_j)^T \u_i \geq \frac{1}{2} \gamma (V_{ij}^s(\x_i, \x_j))$, then it holds that:
\[
\begin{split}
\nabla_{[\x_i]} V_{ij}^s(\x_i, \x_j)^T \u_i + \nabla_{[\x_i]} V_{ji}^s(\x_j, \x_i)^T \u_j
&\geq -\frac{1}{2} \gamma\left( V_{ij}^s(\x_i, \x_j) \right) - \frac{1}{2} \gamma\left( V_{ji}^s(\x_j, \x_i) \right) \\
&\geq - \gamma\left( V_{ij}^s(\x_i, \x_j) \right)
\end{split}
\]
\end{remark}
\end{description}
\subsection{Multi-robot collision avoidance with unicycle control}
\begin{description}
\item[Unicycle model with non-holonomic constraints]
Model that captures the constraints given by wheels. Its dynamics is:
\[
\begin{split}
\dot{\vec{p}}_x &= v \cos(\theta) \\
\dot{\vec{p}}_y &= v \sin(\theta) \\
\theta &= \omega \\
\end{split}
\]
where:
\begin{itemize}
\item $(\vec{p}_x, \vec{p}_y)$ is the position of the center of mass,
\item $\theta$ is the orientation,
\item $v$ is the linear velocity,
\item $\omega$ is the angular velocity.
\end{itemize}
\begin{figure}[H]
\centering
\includegraphics[width=0.25\linewidth]{./img/unicycle_model.png}
\end{figure}
\begin{remark}
It is assumed that the robot does not drift sideways ($v_{\bot} = 0$).
\end{remark}
\item[Single integrator to unicycle control mapping] \marginnote{Single integrator to unicycle control mapping}
Consider a point $\x^\text{int}$ longitudinal to $v$ that is not the barycenter:
\[
\x^\text{int} = \begin{bmatrix}
\vec{p}_x \\ \vec{p}_y
\end{bmatrix}
+
\rho \begin{bmatrix}
\cos(\theta) \\ \sin(\theta)
\end{bmatrix}
\]
where $\rho > 0$ is the distance to the barycenter.
By differentiating w.r.t. time, the dynamics is:
\[
\dot{\x}^\text{int} = \begin{bmatrix}
\dot{\vec{p}}_x \\ \dot{\vec{p}}_y
\end{bmatrix}
+
\rho \dot{\theta} \begin{bmatrix}
- \sin(\theta) \\ \cos(\theta)
\end{bmatrix}
\]
\begin{figure}[H]
\centering
\includegraphics[width=0.2\linewidth]{./img/single_unicycle_map.png}
\end{figure}
By using the unicycle model dynamics, it becomes:
\[
\dot{\x}^\text{int} = \begin{bmatrix}
\cos(\theta) & -\rho\sin(\theta) \\
\sin(\theta) & \rho\cos(\theta) \\
\end{bmatrix}
\begin{bmatrix}
v \\ \omega
\end{bmatrix}
\]
By formulating $v$ and $\omega$ as a state-feedback control with input $\u^\text{int} \in \mathbb{R}^2$ as:
\[
\begin{bmatrix}
v \\ \omega
\end{bmatrix}
=
\begin{bmatrix}
\cos(\theta) & \sin(\theta) \\
-\frac{1}{\rho} \sin(\theta) & \frac{1}{\rho} \cos(\theta)
\end{bmatrix} \u^\text{int}
\]
The result is a single-integrator $\dot{\x}^\text{int} = \u^\text{int}$.
\end{description}