mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Fix typos <noupdate>
This commit is contained in:
@ -173,7 +173,7 @@
|
|||||||
Use $\x_i$ to approximate $h_i(\u_i)$ and dynamic average consensus for the aggregation function. The dynamics is:
|
Use $\x_i$ to approximate $h_i(\u_i)$ and dynamic average consensus for the aggregation function. The dynamics is:
|
||||||
\[
|
\[
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\dot{\u}_i &= -\delta_1 \nabla h_i(\u_i) \left( \nabla_{[\x_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) + \left( \nabla_{[\phi_i(\x_i)+\w_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) + \v_i \right) \nabla \phi_i(\x_i) \right) \\
|
\dot{\u}_i &= -\delta_1 \nabla h_i(\u_i) \Big( \nabla_{[\x_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) + \left( \nabla_{[\phi_i(\x_i)+\w_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) + \v_i \right) \nabla \phi_i(\x_i) \Big) \\
|
||||||
\delta_2 \dot{\w}_i &= - \sum_{j \in \mathcal{N}_i} a_{ij} (\w_i - \w_j) - \sum_{j \in \mathcal{N}_i} a_{ij} (\phi_i(\x_i) - \phi_i(\x_j)) \\
|
\delta_2 \dot{\w}_i &= - \sum_{j \in \mathcal{N}_i} a_{ij} (\w_i - \w_j) - \sum_{j \in \mathcal{N}_i} a_{ij} (\phi_i(\x_i) - \phi_i(\x_j)) \\
|
||||||
\delta_2 \dot{\v}_i &= - \sum_{j \in \mathcal{N}_i} a_{ij} (\v_i - \v_j) - \sum_{j \in \mathcal{N}_i} a_{ij} (\nabla_{[\phi_i(\x_i)+\w_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) - \nabla_{[\phi_j(\x_j)+\w_j]} l_j(\x_j, \phi_j(\x_j)+\w_j)) \\
|
\delta_2 \dot{\v}_i &= - \sum_{j \in \mathcal{N}_i} a_{ij} (\v_i - \v_j) - \sum_{j \in \mathcal{N}_i} a_{ij} (\nabla_{[\phi_i(\x_i)+\w_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) - \nabla_{[\phi_j(\x_j)+\w_j]} l_j(\x_j, \phi_j(\x_j)+\w_j)) \\
|
||||||
\end{split}
|
\end{split}
|
||||||
|
|||||||
@ -217,7 +217,7 @@
|
|||||||
where $\u_i^\text{ref}$ is the reference input of the high level controller and $\u_i^\text{max}$ is the bound.
|
where $\u_i^\text{ref}$ is the reference input of the high level controller and $\u_i^\text{max}$ is the bound.
|
||||||
|
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
The policy should be computed continuously for each $x_i(t)$.
|
The policy should be computed continuously for each $\x_i(t)$.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
||||||
\item[Decentralized safety controller] \marginnote{Decentralized safety controller}
|
\item[Decentralized safety controller] \marginnote{Decentralized safety controller}
|
||||||
@ -255,13 +255,13 @@
|
|||||||
\begin{split}
|
\begin{split}
|
||||||
\dot{\vec{p}}_x &= v \cos(\theta) \\
|
\dot{\vec{p}}_x &= v \cos(\theta) \\
|
||||||
\dot{\vec{p}}_y &= v \sin(\theta) \\
|
\dot{\vec{p}}_y &= v \sin(\theta) \\
|
||||||
\theta &= \omega \\
|
\dot{\theta} &= \omega \\
|
||||||
\end{split}
|
\end{split}
|
||||||
\]
|
\]
|
||||||
where:
|
where:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $(\vec{p}_x, \vec{p}_y)$ is the position of the center of mass,
|
\item $(\vec{p}_x, \vec{p}_y)$ is the position of the center of mass,
|
||||||
\item $\theta$ is the orientation,
|
\item $\dot{\theta}$ is the orientation,
|
||||||
\item $v$ is the linear velocity,
|
\item $v$ is the linear velocity,
|
||||||
\item $\omega$ is the angular velocity.
|
\item $\omega$ is the angular velocity.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|||||||
Reference in New Issue
Block a user