diff --git a/src/year2/distributed-autonomous-systems/sections/_feedback_optimization.tex b/src/year2/distributed-autonomous-systems/sections/_feedback_optimization.tex index 606d3c1..d02858c 100644 --- a/src/year2/distributed-autonomous-systems/sections/_feedback_optimization.tex +++ b/src/year2/distributed-autonomous-systems/sections/_feedback_optimization.tex @@ -173,7 +173,7 @@ Use $\x_i$ to approximate $h_i(\u_i)$ and dynamic average consensus for the aggregation function. The dynamics is: \[ \begin{split} - \dot{\u}_i &= -\delta_1 \nabla h_i(\u_i) \left( \nabla_{[\x_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) + \left( \nabla_{[\phi_i(\x_i)+\w_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) + \v_i \right) \nabla \phi_i(\x_i) \right) \\ + \dot{\u}_i &= -\delta_1 \nabla h_i(\u_i) \Big( \nabla_{[\x_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) + \left( \nabla_{[\phi_i(\x_i)+\w_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) + \v_i \right) \nabla \phi_i(\x_i) \Big) \\ \delta_2 \dot{\w}_i &= - \sum_{j \in \mathcal{N}_i} a_{ij} (\w_i - \w_j) - \sum_{j \in \mathcal{N}_i} a_{ij} (\phi_i(\x_i) - \phi_i(\x_j)) \\ \delta_2 \dot{\v}_i &= - \sum_{j \in \mathcal{N}_i} a_{ij} (\v_i - \v_j) - \sum_{j \in \mathcal{N}_i} a_{ij} (\nabla_{[\phi_i(\x_i)+\w_i]} l_i(\x_i, \phi_i(\x_i)+\w_i) - \nabla_{[\phi_j(\x_j)+\w_j]} l_j(\x_j, \phi_j(\x_j)+\w_j)) \\ \end{split} diff --git a/src/year2/distributed-autonomous-systems/sections/_safety_controllers.tex b/src/year2/distributed-autonomous-systems/sections/_safety_controllers.tex index 110b8e6..fa954f0 100644 --- a/src/year2/distributed-autonomous-systems/sections/_safety_controllers.tex +++ b/src/year2/distributed-autonomous-systems/sections/_safety_controllers.tex @@ -217,7 +217,7 @@ where $\u_i^\text{ref}$ is the reference input of the high level controller and $\u_i^\text{max}$ is the bound. \begin{remark} - The policy should be computed continuously for each $x_i(t)$. + The policy should be computed continuously for each $\x_i(t)$. \end{remark} \item[Decentralized safety controller] \marginnote{Decentralized safety controller} @@ -255,13 +255,13 @@ \begin{split} \dot{\vec{p}}_x &= v \cos(\theta) \\ \dot{\vec{p}}_y &= v \sin(\theta) \\ - \theta &= \omega \\ + \dot{\theta} &= \omega \\ \end{split} \] where: \begin{itemize} \item $(\vec{p}_x, \vec{p}_y)$ is the position of the center of mass, - \item $\theta$ is the orientation, + \item $\dot{\theta}$ is the orientation, \item $v$ is the linear velocity, \item $\omega$ is the angular velocity. \end{itemize}