Small fixes

This commit is contained in:
2024-05-19 19:33:26 +02:00
parent 0b42962ea4
commit 57b03aa6ab
2 changed files with 12 additions and 8 deletions

View File

@ -220,12 +220,6 @@ In a neuron, there are four regions that handle signals:
\includegraphics[width=0.8\textwidth]{./img/neuron_transmission.png} \includegraphics[width=0.8\textwidth]{./img/neuron_transmission.png}
\caption{Transmitting regions of different types of neurons} \caption{Transmitting regions of different types of neurons}
\end{figure} \end{figure}
\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{./img/neuron_transmission2.png}
\caption{Signal from the input to the output zones}
\end{figure}
\end{descriptionlist} \end{descriptionlist}
@ -292,6 +286,16 @@ In a neuron, there are four regions that handle signals:
\end{remark} \end{remark}
\end{enumerate} \end{enumerate}
\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{./img/neuron_transmission2.png}
\caption{
\parbox[t]{0.6\linewidth}{
Signal from the input to the output zone. The amplitude of the stimulus modulates the frequency of \ac{ap}.
}
}
\end{figure}
\begin{figure}[H] \begin{figure}[H]
\begin{subfigure}{.45\textwidth} \begin{subfigure}{.45\textwidth}
\centering \centering
@ -310,7 +314,7 @@ In a neuron, there are four regions that handle signals:
\begin{remark} \begin{remark}
As the signal is constantly regenerated, As the signal is constantly regenerated,
\Acp{ap} have similar amplitude and duration in all neurons, regardless of the characteristics of the input \acp{psp}. \Acp{ap} have similar amplitude and duration in all neurons, regardless of the characteristics of the input \acp{psp}.
Therefore, the only way an \ac{ap} has to carry information is by varying frequency and firing duration, making it a binary signal. Therefore, the only way an \ac{ap} has to carry information is by varying frequency depending on the stimulus intensity, making it a binary signal.
\end{remark} \end{remark}
\end{description} \end{description}

View File

@ -332,7 +332,7 @@ The prediction is obtained as the index of the maximum score.
\] \]
where: where:
\begin{itemize} \begin{itemize}
\item $\matr{\theta} = (W_1 \in \mathbb{R}^{h \times i}, b_1 \in \mathbb{R}^{h}, W_2 \in \mathbb{R}^{c \times h}, b_2 \in \mathbb{R}^{c})$ \item $\matr{\theta} = (\matr{W}_1 \in \mathbb{R}^{h \times i}, \vec{b}_1 \in \mathbb{R}^{h}, \matr{W}_2 \in \mathbb{R}^{c \times h}, \vec{b}_2 \in \mathbb{R}^{c})$
are the parameters of the linear transformations with an inner representation of size $h$. are the parameters of the linear transformations with an inner representation of size $h$.
\item $\phi$ is an activation function. \item $\phi$ is an activation function.
\item $\vec{h}$ and $\vec{s}$ are activations. \item $\vec{h}$ and $\vec{s}$ are activations.