From 57b03aa6abae76ce39ed3beefacb51de32131b2a Mon Sep 17 00:00:00 2001 From: NotXia <35894453+NotXia@users.noreply.github.com> Date: Sun, 19 May 2024 19:33:26 +0200 Subject: [PATCH] Small fixes --- .../module1/sections/_nervous_system.tex | 18 +++++++++++------- .../module2/sections/_classification.tex | 2 +- 2 files changed, 12 insertions(+), 8 deletions(-) diff --git a/src/year1/cognition-and-neuroscience/module1/sections/_nervous_system.tex b/src/year1/cognition-and-neuroscience/module1/sections/_nervous_system.tex index 8fc53a6..d996611 100644 --- a/src/year1/cognition-and-neuroscience/module1/sections/_nervous_system.tex +++ b/src/year1/cognition-and-neuroscience/module1/sections/_nervous_system.tex @@ -220,12 +220,6 @@ In a neuron, there are four regions that handle signals: \includegraphics[width=0.8\textwidth]{./img/neuron_transmission.png} \caption{Transmitting regions of different types of neurons} \end{figure} - - \begin{figure}[h] - \centering - \includegraphics[width=0.8\textwidth]{./img/neuron_transmission2.png} - \caption{Signal from the input to the output zones} - \end{figure} \end{descriptionlist} @@ -292,6 +286,16 @@ In a neuron, there are four regions that handle signals: \end{remark} \end{enumerate} + \begin{figure}[h] + \centering + \includegraphics[width=0.8\textwidth]{./img/neuron_transmission2.png} + \caption{ + \parbox[t]{0.6\linewidth}{ + Signal from the input to the output zone. The amplitude of the stimulus modulates the frequency of \ac{ap}. + } + } + \end{figure} + \begin{figure}[H] \begin{subfigure}{.45\textwidth} \centering @@ -310,7 +314,7 @@ In a neuron, there are four regions that handle signals: \begin{remark} As the signal is constantly regenerated, \Acp{ap} have similar amplitude and duration in all neurons, regardless of the characteristics of the input \acp{psp}. - Therefore, the only way an \ac{ap} has to carry information is by varying frequency and firing duration, making it a binary signal. + Therefore, the only way an \ac{ap} has to carry information is by varying frequency depending on the stimulus intensity, making it a binary signal. \end{remark} \end{description} diff --git a/src/year1/image-processing-and-computer-vision/module2/sections/_classification.tex b/src/year1/image-processing-and-computer-vision/module2/sections/_classification.tex index 0177117..4b359f0 100644 --- a/src/year1/image-processing-and-computer-vision/module2/sections/_classification.tex +++ b/src/year1/image-processing-and-computer-vision/module2/sections/_classification.tex @@ -332,7 +332,7 @@ The prediction is obtained as the index of the maximum score. \] where: \begin{itemize} - \item $\matr{\theta} = (W_1 \in \mathbb{R}^{h \times i}, b_1 \in \mathbb{R}^{h}, W_2 \in \mathbb{R}^{c \times h}, b_2 \in \mathbb{R}^{c})$ + \item $\matr{\theta} = (\matr{W}_1 \in \mathbb{R}^{h \times i}, \vec{b}_1 \in \mathbb{R}^{h}, \matr{W}_2 \in \mathbb{R}^{c \times h}, \vec{b}_2 \in \mathbb{R}^{c})$ are the parameters of the linear transformations with an inner representation of size $h$. \item $\phi$ is an activation function. \item $\vec{h}$ and $\vec{s}$ are activations.