mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Small fixes
This commit is contained in:
@ -220,12 +220,6 @@ In a neuron, there are four regions that handle signals:
|
||||
\includegraphics[width=0.8\textwidth]{./img/neuron_transmission.png}
|
||||
\caption{Transmitting regions of different types of neurons}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{./img/neuron_transmission2.png}
|
||||
\caption{Signal from the input to the output zones}
|
||||
\end{figure}
|
||||
\end{descriptionlist}
|
||||
|
||||
|
||||
@ -292,6 +286,16 @@ In a neuron, there are four regions that handle signals:
|
||||
\end{remark}
|
||||
\end{enumerate}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{./img/neuron_transmission2.png}
|
||||
\caption{
|
||||
\parbox[t]{0.6\linewidth}{
|
||||
Signal from the input to the output zone. The amplitude of the stimulus modulates the frequency of \ac{ap}.
|
||||
}
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]
|
||||
\begin{subfigure}{.45\textwidth}
|
||||
\centering
|
||||
@ -310,7 +314,7 @@ In a neuron, there are four regions that handle signals:
|
||||
\begin{remark}
|
||||
As the signal is constantly regenerated,
|
||||
\Acp{ap} have similar amplitude and duration in all neurons, regardless of the characteristics of the input \acp{psp}.
|
||||
Therefore, the only way an \ac{ap} has to carry information is by varying frequency and firing duration, making it a binary signal.
|
||||
Therefore, the only way an \ac{ap} has to carry information is by varying frequency depending on the stimulus intensity, making it a binary signal.
|
||||
\end{remark}
|
||||
\end{description}
|
||||
|
||||
|
||||
@ -332,7 +332,7 @@ The prediction is obtained as the index of the maximum score.
|
||||
\]
|
||||
where:
|
||||
\begin{itemize}
|
||||
\item $\matr{\theta} = (W_1 \in \mathbb{R}^{h \times i}, b_1 \in \mathbb{R}^{h}, W_2 \in \mathbb{R}^{c \times h}, b_2 \in \mathbb{R}^{c})$
|
||||
\item $\matr{\theta} = (\matr{W}_1 \in \mathbb{R}^{h \times i}, \vec{b}_1 \in \mathbb{R}^{h}, \matr{W}_2 \in \mathbb{R}^{c \times h}, \vec{b}_2 \in \mathbb{R}^{c})$
|
||||
are the parameters of the linear transformations with an inner representation of size $h$.
|
||||
\item $\phi$ is an activation function.
|
||||
\item $\vec{h}$ and $\vec{s}$ are activations.
|
||||
|
||||
Reference in New Issue
Block a user