Add DAS graph theory

This commit is contained in:
2025-02-25 17:35:21 +01:00
parent c5649391bc
commit 551a4ab8fc
4 changed files with 159 additions and 0 deletions

View File

@ -0,0 +1 @@
../../ainotes.cls

View File

@ -0,0 +1,17 @@
\documentclass[11pt]{ainotes}
\title{Distributed Autonomous Systems}
\date{2024 -- 2025}
\def\lastupdate{{PLACEHOLDER-LAST-UPDATE}}
\def\giturl{{PLACEHOLDER-GIT-URL}}
\newcommand{\indeg}[1][]{\ensuremath{\text{deg}_{#1}^\text{IN}}}
\newcommand{\outdeg}[1][]{\ensuremath{\text{deg}_{#1}^\text{OUT}}}
\begin{document}
\makenotesfront
\include{./sections/_averaging_systems.tex}
\end{document}

View File

@ -0,0 +1,11 @@
{
"name": "Distributed Autonomous Systems",
"year": 2,
"semester": 2,
"pdfs": [
{
"name": null,
"path": "das.pdf"
}
]
}

View File

@ -0,0 +1,130 @@
\chapter{Averaging systems}
\section{Graphs}
\subsection{Definitions}
\begin{description}
\item[Directed graph (digraph)] \marginnote{Directed graph}
Pair $G = (I, E)$ where $I=\{1, \dots, N\}$ is the set of nodes and $E \subseteq I \times I$ is the set of edges.
\item[Undirected graph] \marginnote{Undirected graph}
Digraph where $\forall i,j: (i, j) \in E \Rightarrow (j, i) \in E$.
\item[Subgraph] \marginnote{Subgraph}
Given a graph $(I, E)$, $(I', E')$ is a subgraph of it if $I' \subseteq I$ and $E' \subset E$.
\begin{description}
\item[Spanning subgraph] Subgraph where $I' = I$.
\end{description}
\item[In-neighbor] \marginnote{In-neighbor}
A node $j \in I$ is an in-neighbor of $i \in I$ if $(j, i) \in E$.
\begin{description}
\item[Set of in-neighbors] \marginnote{Set of in-neighbors}
The set of in-neighbors of $i \in I$ is the set:
\[ \mathcal{N}_i^\text{IN} = \{ j \in I \mid (j, i) \in E \} \]
\item[In-degree] \marginnote{In-degree}
Number of in-neighbors of a node $i \in I$:
\[ \indeg[i] = | \mathcal{N}_i^\text{IN} | \]
\end{description}
\item[Out-neighbor] \marginnote{Out-neighbor}
A node $j \in I$ is an out-neighbor of $i \in I$ if $(i, j) \in E$.
\begin{description}
\item[Set of out-neighbors] \marginnote{Set of in-neighbors}
The set of out-neighbors of $i \in I$ is the set:
\[ \mathcal{N}_i^\text{OUT} = \{ j \in I \mid (i, j) \in E \} \]
\item[Out-degree] \marginnote{Out-degree}
Number of out-neighbors of a node $i \in I$:
\[ \outdeg[i] = | \mathcal{N}_i^\text{OUT} | \]
\end{description}
\item[Balanced digraph] \marginnote{Balanced digraph}
A digraph is balanced if $\forall i \in I: \indeg[i] = \outdeg[i]$.
\item[Periodic graph] \marginnote{Periodic graph}
Graph where there exists a period $k > 1$ that divides the length of any cycle.
\begin{remark}
A graph with self-loops is aperiodic.
\end{remark}
\item[Strongly connected digraph] \marginnote{Strongly connected digraph}
Digraph where each node is reachable from any node.
\item[Connected undirected graph] \marginnote{Connected undirected graph}
Undirected graph where each node is reachable from any node.
\item[Weakly connected digraph] \marginnote{Weakly connected digraph}
Digraph where its undirected version is connected.
\end{description}
\subsection{Weighted digraphs}
\begin{description}
\item[Weighted digraph] \marginnote{Weighted digraph}
Triplet $G=(I, E, \{a_{i, j}\}_{(i,j) \in E})$ where $(I, E)$ is a digraph and $a_{i,j} > 0$ is a weight for the edge $(i,j)$.
\begin{description}
\item[Weighted in-degree] \marginnote{Weighted in-degree}
Sum of the weights of the inward edges:
\[ \indeg[i] = \sum_{j=1}^N a_{j, i} \]
\item[Weighted out-degree] \marginnote{Weighted out-degree}
Sum of the weights of the outward edges:
\[ \outdeg[i] = \sum_{j=1}^N a_{i, j} \]
\end{description}
\item[Weighted adjacency matrix] \marginnote{Weighted adjacency matrix}
Non-negative matrix $\matr{A}$ such that $\matr{A}_{i,j} = a_{i,j}$:
\[
\begin{cases}
\matr{A}_{i,j} > 0 & \text{if $(i, j) \in E$} \\
\matr{A}_{i, j} = 0 & \text{otherwise}
\end{cases}
\]
\item[In/out-degree matrix] \marginnote{In/out-degree matrix}
Matrix where the diagonal contains the in/out-degrees:
\[
\matr{D}^\text{IN} = \begin{bmatrix}
\indeg[1] & 0 & \cdots & 0 \\
0 & \indeg[2] \\
\vdots & & \ddots \\
0 & \cdots & 0 & \indeg[N] \\
\end{bmatrix}
\qquad
\matr{D}^\text{OUT} = \begin{bmatrix}
\outdeg[1] & 0 & \cdots & 0 \\
0 & \outdeg[2] \\
\vdots & & \ddots \\
0 & \cdots & 0 & \outdeg[N] \\
\end{bmatrix}
\]
\begin{remark}
Given a digraph with adjacency matrix $\matr{A}$, its reverse digraph has adjacency matrix $\matr{A}^T$.
\end{remark}
\begin{remark}
It holds that:
\[
\matr{D}^\text{IN} = \text{diag}(\matr{A}^T \matr{1})
\quad
\matr{D}^\text{OUT} = \text{diag}(\matr{A} \matr{1})
\]
where $\matr{1}$ is a vector of ones.
\end{remark}
\begin{remark}
A digraph is balanced iff $\matr{A}^T \matr{1} = \matr{A} \matr{1}$.
\end{remark}
\end{description}