Add DAS more details in safey controllers

This commit is contained in:
2025-05-15 19:13:23 +02:00
parent a767519b5e
commit 494b976aa5

View File

@ -306,13 +306,16 @@
By using the unicycle model dynamics, it becomes:
\[
\dot{\x}^\text{int} = \begin{bmatrix}
\cos(\theta) & -\rho\sin(\theta) \\
\sin(\theta) & \rho\cos(\theta) \\
\end{bmatrix}
\begin{bmatrix}
v \\ \omega
\end{bmatrix}
\begin{split}
\dot{\x}^\text{int} &= \begin{bmatrix}
\cos(\theta) & -\rho\sin(\theta) \\
\sin(\theta) & \rho\cos(\theta) \\
\end{bmatrix}
\begin{bmatrix}
v \\ \omega
\end{bmatrix} \\
\dot{\theta} &= \omega
\end{split}
\]
By formulating $v$ and $\omega$ as a state-feedback control with input $\u^\text{int} \in \mathbb{R}^2$ as:
@ -326,5 +329,10 @@
-\frac{1}{\rho} \sin(\theta) & \frac{1}{\rho} \cos(\theta)
\end{bmatrix} \u^\text{int}
\]
The result is a single-integrator $\dot{\x}^\text{int} = \u^\text{int}$.
The result is a single-integrator $\dot{\x}^\text{int} = g(\x)\u^\text{int}$.
A choice of $\u$ can be:
\[
\u^\text{int} = k (\x^\text{int} - \x^\text{dest}) + \dot{\x}^\text{dest}
\]
\end{description}