mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Add DAS more details in safey controllers
This commit is contained in:
@ -306,13 +306,16 @@
|
||||
|
||||
By using the unicycle model dynamics, it becomes:
|
||||
\[
|
||||
\dot{\x}^\text{int} = \begin{bmatrix}
|
||||
\cos(\theta) & -\rho\sin(\theta) \\
|
||||
\sin(\theta) & \rho\cos(\theta) \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
v \\ \omega
|
||||
\end{bmatrix}
|
||||
\begin{split}
|
||||
\dot{\x}^\text{int} &= \begin{bmatrix}
|
||||
\cos(\theta) & -\rho\sin(\theta) \\
|
||||
\sin(\theta) & \rho\cos(\theta) \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
v \\ \omega
|
||||
\end{bmatrix} \\
|
||||
\dot{\theta} &= \omega
|
||||
\end{split}
|
||||
\]
|
||||
|
||||
By formulating $v$ and $\omega$ as a state-feedback control with input $\u^\text{int} \in \mathbb{R}^2$ as:
|
||||
@ -326,5 +329,10 @@
|
||||
-\frac{1}{\rho} \sin(\theta) & \frac{1}{\rho} \cos(\theta)
|
||||
\end{bmatrix} \u^\text{int}
|
||||
\]
|
||||
The result is a single-integrator $\dot{\x}^\text{int} = \u^\text{int}$.
|
||||
The result is a single-integrator $\dot{\x}^\text{int} = g(\x)\u^\text{int}$.
|
||||
|
||||
A choice of $\u$ can be:
|
||||
\[
|
||||
\u^\text{int} = k (\x^\text{int} - \x^\text{dest}) + \dot{\x}^\text{dest}
|
||||
\]
|
||||
\end{description}
|
||||
Reference in New Issue
Block a user