Add DAS gradient tracking optimality

This commit is contained in:
2025-04-08 22:30:12 +02:00
parent fe682f2ff9
commit 43de17fba1

View File

@ -731,4 +731,25 @@
% \[
% \z_i^{k+1} = \sum_{j=1}^N a_{ij} \z_j^k - (N\alpha) \frac{1}{N} \sum_{j=1}^N \nabla l_k(z_k^k)
% \]
\end{description}
\begin{theorem}[Gradient tracking algorithm optimality] \marginnote{Gradient tracking algorithm optimality}
If:
\begin{itemize}
\item $\matr{A}$ is the adjacency matrix of an undirected and connected communication graph $G$ such that it is doubly stochastic and $a_{ij} > 0$.
\item Each cost function $l_i$ is $\mu$-strongly convex and its gradient $L$-Lipschitz continuous.
\end{itemize}
Then, there exists $\alpha^* > 0$ such that, for any choice of the step size $\alpha \in (0, \alpha^*)$, the sequence of local solutions $\{ \z_i^k \}_{k \in \mathbb{N}}$ of each agent generated by the gradient tracking algorithm asymptotically converges to a consensual optimal solution $\z^*$:
\[ \lim_{k \rightarrow \infty} \Vert \z_i^k - \z^* \Vert = 0 \]
Moreover, the convergence rate is linear and stability is exponential:
\[
\exists \rho \in (0,1): \Vert \z_i^k - \z^* \Vert \leq \rho \Vert \z_i^{k+1} - \z^* \Vert
\,\,\land\,\,
\rho \Vert \z_i^{k+1} - \z^* \Vert \leq \rho^k \Vert \z_i^0 - \z^* \Vert
\]
\end{theorem}
\end{description}
\begin{remark}
It can be shown that gradient tracking also works with non-convex optimization and, under the correct assumptions, converges to a stationary point.
\end{remark}