Add SMM eigenvalues/vectors

This commit is contained in:
2023-09-24 10:51:34 +02:00
parent 0fae4532a6
commit 144267027a

View File

@ -31,7 +31,7 @@ A subset $U \subseteq V$ of a vector space $V$, is a \textbf{subspace} iff $U$ i
\subsubsection{Basis}
\marginnote{Basis}
Let $V$ be a vector space of dimension $n$.
A basis $\beta = \{ \vec{v}_1, \dots, \vec{v}_n \}$ of $V$ is a set of $n$ linear independent vectors of $V$.\\
A basis $\beta = \{ \vec{v}_1, \dots, \vec{v}_n \}$ of $V$ is a set of $n$ linearly independent vectors of $V$.\\
Each element of $V$ can be represented as a linear combination of the vectors in the basis $\beta$:
\[ \forall \vec{w} \in V: \vec{w} = \lambda_1\vec{v}_1 + \dots + \lambda_n\vec{v}_n \text{ where } \lambda_i \in \mathbb{R} \]
%
@ -79,6 +79,10 @@ The null space (kernel) of a matrix $\matr{A} \in \mathbb{R}^{m \times n}$ is a
A square matrix $\matr{A}$ with $\text{\normalfont Ker}(\matr{A}) = \{\nullvec\}$ is non singular.
\end{theorem}
\subsubsection{Similar matrices} \marginnote{Similar matrices}
Two matrices $\matr{A}$ and $\matr{D}$ are \textbf{similar} if there exists an invertible matrix $\matr{P}$ such that:
\[ \matr{D} = \matr{P}^{-1} \matr{A} \matr{P} \]
\subsection{Norms}
@ -97,13 +101,13 @@ such that for each $\lambda \in \mathbb{R}$ and $\vec{x}, \vec{y} \in \mathbb{R}
\end{itemize}
%
Common norms are:
\begin{description}
\begin{descriptionlist}
\item[2-norm] $\Vert \vec{x} \Vert_2 = \sqrt{ \sum_{i=1}^{n} x_i^2 }$
\item[1-norm] $\Vert \vec{x} \Vert_1 = \sum_{i=1}^{n} \vert x_i \vert$
\item[$\infty$-norm] $\Vert \vec{x} \Vert_{\infty} = \max_{1 \leq i \leq n} \vert x_i \vert$
\end{description}
\end{descriptionlist}
%
In general, different norms tend to maintain the same proportion.
In some cases, unbalanced results may be given when comparing different norms.
@ -132,7 +136,7 @@ such that for each $\lambda \in \mathbb{R}$ and $\matr{A}, \matr{B} \in \mathbb{
\end{itemize}
%
Common norms are:
\begin{description}
\begin{descriptionlist}
\item[2-norm]
$\Vert \matr{A} \Vert_2 = \sqrt{ \rho(\matr{A}^T\matr{A}) }$,\\
where $\rho(\matr{X})$ is the largest absolute value of the eigenvalues of $\matr{X}$ (spectral radius).
@ -140,7 +144,7 @@ Common norms are:
\item[1-norm] $\Vert \matr{A} \Vert_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{m} \vert a_{i,j} \vert$
\item[Frobenius norm] $\Vert \matr{A} \Vert_F = \sqrt{ \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i,j}^2 }$
\end{description}
\end{descriptionlist}
@ -168,10 +172,6 @@ Common norms are:
Which implies that $\matr{A}$ is non-singular (\Cref{th:kernel_invertible}).
\item The diagonal elements of $\matr{A}$ are all positive.
\end{enumerate}
\begin{theorem}
If the eigenvalues of a symmetric matrix $\matr{B} \in \mathbb{R}^{n \times n}$ are all positive.
Then $\matr{B}$ is positive definite.
\end{theorem}
\end{description}
@ -250,7 +250,7 @@ In other words, applying $\pi$ multiple times gives the same result (i.e. idempo
$\pi$ can be expressed as a transformation matrix $\matr{P}_\pi$ such that:
\[ \matr{P}_\pi^2 = \matr{P}_\pi \]
\subsubsection{Projection onto general subspaces}
\subsubsection{Projection onto general subspaces} \marginnote{Projection onto subspace basis}
To project a vector $\vec{x} \in \mathbb{R}^n$ into a lower-dimensional subspace $U \subseteq \mathbb{R}^n$,
it is possible to use the basis of $U$.\\
%
@ -259,4 +259,93 @@ $\matr{B} = (\vec{b}_1, \dots, \vec{b}_m) \in \mathbb{R}^{n \times m}$ an ordere
A projection $\pi_U(\vec{x})$ represents $\vec{x}$ as a linear combination of the basis:
\[ \pi_U(\vec{x}) = \sum_{i=1}^{m} \lambda_i \vec{b}_i = \matr{B}\vec{\lambda} \]
where $\vec{\lambda} = (\lambda_1, \dots, \lambda_m)^T \in \mathbb{R}^{m}$ are the new coordinates of $\vec{x}$
and is found by minimizing the distance between $\pi_U(\vec{x})$ and $\vec{x}$.
and is found by minimizing the distance between $\pi_U(\vec{x})$ and $\vec{x}$.
\subsection{Eigenvectors and eigenvalues}
Given a square matrix $\matr{A} \in \mathbb{R}^{n \times n}$,
$\lambda \in \mathbb{C}$ is an eigenvalue of $\matr{A}$ \marginnote{Eigenvalue}
with corresponding eigenvector $\vec{x} \in \mathbb{R}^n \smallsetminus \{ \nullvec \}$ if \marginnote{Eigenvector}
\[ \matr{A}\vec{x} = \lambda\vec{x} \]
It is equivalent to say that:
\begin{itemize}
\item $\lambda$ is an eigenvalue of $\matr{A} \in \mathbb{R}^{n \times n}$
\item $\exists \vec{x} \in \mathbb{R}^n \smallsetminus \{ \nullvec \}$ s.t. $\matr{A}\vec{x} = \lambda\vec{x}$ \\
Equivalently the system $(\matr{A} - \lambda \matr{I}_n)\vec{x} = \nullvec$ is non-trivial ($\vec{x} \neq \nullvec$).
\item $\text{rank}(\matr{A} - \lambda \matr{I}_n) < n$
\item $\det(\matr{A} - \lambda \matr{I}_n) = 0$ (i.e. $(\matr{A} - \lambda \matr{I}_n)$ is singular {\footnotesize(i.e. not invertible)})
\end{itemize}
Note that eigenvectors are not unique.
Given an eigenvector $\vec{x}$ of $\matr{A}$ with eigenvalue $\lambda$,
we can prove that $\forall c \in \mathbb{R} \smallsetminus \{0\}:$ $c\vec{x}$ is an eigenvector of $\matr{A}$:
\[ \matr{A}(c\vec{x}) = c(\matr{A}\vec{x}) = c\lambda\vec{x} = \lambda(c\vec{x}) \]
% \begin{theorem}
% The eigenvalues of a symmetric matrix $\matr{A} \in \mathbb{R}^{n \times n}$ are all in $\mathbb{R}$.
% \end{theorem}
\begin{theorem} \marginnote{Eigenvalues and positive definiteness}
$\matr{A} \in \mathbb{R}^{n \times n}$ is symmetric positive definite $\iff$
its eigenvalues are all positive.
\end{theorem}
\begin{description}
\item[Eigenspace] \marginnote{Eigenspace}
Set of all the eigenvectors of $\matr{A} \in \mathbb{R}^{n \times n}$ associated to an eigenvalues $\lambda$.
This set is a subspace of $\mathbb{R}^n$.
\item[Eigenspectrum] \marginnote{Eigenspectrum}
Set of all eigenvalues of $\matr{A} \in \mathbb{R}^{n \times n}$.
\end{description}
\begin{description}
\item[Geometric multiplicity] \marginnote{Geometric multiplicity}
Given an eigenvalue $\lambda$ of a matrix $\matr{A} \in \mathbb{R}^{n \times n}$.
The geometric multiplicity of $\lambda$ is the number of linearly independent eigenvectors associated with $\lambda$.
\end{description}
\begin{theorem} \marginnote{Linearly independent eigenvectors}
Given a matrix $\matr{A} \in \mathbb{R}^{n \times n}$.
If its $n$ eigenvectors $\vec{x}_1, \dots, \vec{x}_n$ are associated to distinct eigenvalues,
then $\vec{x}_1, \dots, \vec{x}_n$ are linearly independent (i.e. they form a basis of $\mathbb{R}^n$).
\begin{descriptionlist}
\item[Defective matrix] \marginnote{Defective matrix}
A matrix $\matr{A} \in \mathbb{R}^{n \times n}$ is defective if it has less than $n$ linearly independent eigenvectors.
\end{descriptionlist}
\end{theorem}
\begin{theorem}[Spectral theorem] \marginnote{Spectral theorem}
Given a symmetric matrix $\matr{A} \in \mathbb{R}^{n \times n}$.
Its eigenvectors form a orthonormal basis and its eigenvalues are all in $\mathbb{R}$.
\end{theorem}
\subsubsection{Diagonalizability}
\marginnote{Diagonalizable matrix}
A matrix $\matr{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix $\matr{D} \in \mathbb{R}^{n \times n}$:
\[ \exists \matr{P} \in \mathbb{R}^{n \times n} \text{ s.t. } \matr{P} \text{ invertible and } \matr{D} = \matr{P}^{-1}\matr{A}\matr{P} \]
\begin{theorem}
Similar matrices have the same eigenvalues.
\end{theorem}
\begin{theorem}[Eigendecomposition] \marginnote{Eigendecomposition}
Given a matrix $\matr{A} \in \mathbb{R}^{n \times n}$.
If the eigenvectors of $\matr{A}$ form a basis of $\mathbb{R}^n$,
then $\matr{A} \in \mathbb{R}^{n \times n}$ can be decomposed into:
\[ \matr{A} = \matr{P}\matr{D}\matr{P}^{-1} \]
where $\matr{P} \in \mathbb{R}^{n \times n}$ contains the eigenvectors of $\matr{A}$ as its columns and
$\matr{D}$ is a diagonal matrix whose diagonal contains the eigenvalues of $\matr{A}$.
\end{theorem}
\begin{theorem} \marginnote{Symmetric matrix diagonalizability}
A symmetric matrix $\matr{A} \in \mathbb{R}^{n \times n}$ is always diagonalizable.
\end{theorem}