Files
unibo-ai-notes/src/machine-learning-and-data-mining/sections/_data_warehouse.tex
2023-10-14 16:03:06 +02:00

355 lines
13 KiB
TeX

\chapter{Data warehouse}
\begin{description}
\item[\Acl{bi}] \marginnote{\Acl{bi}}
Transform raw data into information.
Deliver the right information to the right people at the right time through the right channel.
\item[\Ac{dwh}] \marginnote{\Acl{dwh}}
Optimized repository that stores information for decision making processes.
\Acp{dwh} are a specific type of \ac{dss}.
Features:
\begin{itemize}
\item Subject-oriented: focused on enterprise specific concepts.
\item Integrates data from different sources and provides an unified view.
\item Non-volatile storage with change tracking.
\end{itemize}
\item[\Ac{dm}] \marginnote{\Acl{dm}}
Subset of the primary \ac{dwh} with information relevant to a specific business area.
\end{description}
\section{\Acl{olap} (\Acs{olap})}
\begin{description}
\item[\ac{olap} analyses] \marginnote{\Acl{olap} (\Acs{olap})}
Able to interactively navigate the information in a data warehouse.
Allows to visualize different levels of aggregation.
\item[\ac{olap} session]
Navigation path created by the operations that a user applied.
\end{description}
\begin{figure}[ht]
\centering
\includegraphics[width=0.35\textwidth]{img/_olap_cube.pdf}
\caption{\ac{olap} data cube}
\end{figure}
\subsection{Operators}
\begin{description}
\item[Roll-up] \marginnote{Roll-up}
\begin{minipage}{0.7\textwidth}
Increases the level of aggregation (i.e. \texttt{GROUP BY} in SQL).
Some details are collapsed together.
\end{minipage}
\hfill
\begin{minipage}{0.15\textwidth}
\centering
\includegraphics[width=\linewidth]{img/olap_rollup.png}
\end{minipage}
\item[Drill-down] \marginnote{Drill-down}
\begin{minipage}{0.7\textwidth}
Reduces the level of aggregation.
Some details are reintroduced.
\end{minipage}
\hfill
\begin{minipage}{0.15\textwidth}
\centering
\includegraphics[width=\linewidth]{img/olap_drilldown.png}
\end{minipage}
\item[Slide-and-dice] \marginnote{Slide-and-dice}
\begin{minipage}{0.65\textwidth}
The slice operator reduces the number of dimensions (i.e. drops columns).
The dice operator reduces the number of data being analyzed (i.e. \texttt{LIMIT} in SQL).
\end{minipage}
\hfill
\begin{minipage}{0.15\textwidth}
\centering
\includegraphics[width=\linewidth]{img/olap_slicedice.png}
\end{minipage}
\item[Pivot] \marginnote{Pivot}
\begin{minipage}{0.7\textwidth}
Changes the layout of the data, to analyze it from a different viewpoint.
\end{minipage}
\hfill
\begin{minipage}{0.15\textwidth}
\centering
\includegraphics[width=\linewidth]{img/olap_pivot.png}
\end{minipage}
\item[Drill-across] \marginnote{Drill-across}
\begin{minipage}{0.7\textwidth}
Links concepts from different data sources (i.e. \texttt{JOIN} in SQL).
\end{minipage}
\hfill
\begin{minipage}{0.15\textwidth}
\centering
\includegraphics[width=\linewidth]{img/olap_drillacross.png}
\end{minipage}
\item[Drill-through] \marginnote{Drill-through}
Switches from multidimensional aggregated data to operational data (e.g. a spreadsheet).
\begin{center}
\includegraphics[width=0.5\textwidth]{img/olap_drillthrough.png}
\end{center}
\end{description}
\section{\Acl{etl} (\Acs{etl})}
\marginnote{\Acl{etl} (\Acs{etl})}
The \Ac{etl} process extracts, integrates and cleans operational data that will be loaded into a data warehouse.
\subsection{Extraction}
Extracted operational data can be:
\begin{descriptionlist}
\item[Structured] \marginnote{Strucured data}
with a predefined data model (e.g. relational DB, CSV)
\item[Untructured] \marginnote{Unstrucured data}
without a predefined data model (e.g. social media content)
\end{descriptionlist}
Extraction can be of two types:
\begin{descriptionlist}
\item[Static] \marginnote{Static extraction}
The entirety of the operational data are extracted to populate the
data warehouse for the first time.
\item[Incremental] \marginnote{Incremental extraction}
Only changes applied since the last extraction are considered.
Can be based on a timestamp or a trigger.
\end{descriptionlist}
\subsection{Cleaning}
Operational data may contain:
\begin{descriptionlist}
\item[Duplicate data]
\item[Missing data]
\item[Improper use of fields] (e.g. saving the phone number in the \texttt{notes} field)
\item[Wrong values] (e.g. 30th of February)
\item[Inconsistency] (e.g. use of different abbreviations)
\item[Typos]
\end{descriptionlist}
Methods to clean and increase the quality of the data are:
\begin{descriptionlist}
\item[Dictionary-based techniques] \marginnote{Dictionary-based cleaning}
Lookup tables to substitute abbreviations, synonyms or typos.
Applicable if the domain is known and limited.
\item[Approximate merging] \marginnote{Approximate merging}
Merging data that do not have a common key.
\begin{description}
\item[Approximate join]
Use non-key attributes to join two tables (e.g. using the name and surname instead of an unique identifier).
\item[Similarity approach]
Use similarity functions (e.g. edit distance) to merge multiple instances of the same information
(e.g. typo in customer surname).
\end{description}
\item[Ad-hoc algorithms] \marginnote{Ad-hoc algorithms}
\end{descriptionlist}
\subsection{Transformation}
Data are transformed to respect the format of the data warehouse:
\begin{descriptionlist}
\item[Conversion] \marginnote{Conversion}
Modifications of types and formats (e.g. date format)
\item[Enrichment] \marginnote{Enrichment}
Creating new information by using existing attributes (e.g. compute profit from receipts and expenses)
\item[Separation and concatenation] \marginnote{Separation and concatenation}
Denormalization of the data: introduces redundances (i.e. breaks normal form\footnote{\url{https://en.wikipedia.org/wiki/Database_normalization}})
to speed up operations.
\end{descriptionlist}
\subsection{Loading}
Adding data into a data warehouse:
\begin{descriptionlist}
\item[Refresh] \marginnote{Refresh loading}
The entire \ac{dwh} is rewritten.
\item[Update] \marginnote{Update loading}
Only the changes are added to the \ac{dwh}. Old data are not modified.
\end{descriptionlist}
\section{Data warehouse architectures}
The architecture of a data warehouse should meet the following requirements:
\begin{descriptionlist}
\item[Separation] Separate the analytical and transactional workflows.
\item[Scalability] Hardware and software should be easily upgradable.
\item[Extensibility] Capability to host new applications and technologies without the need to redesign the system.
\item[Security] Access control.
\item[Administrability] Easily manageable.
\end{descriptionlist}
\subsection{Single-layer architecture}
\marginnote{Single-layer architecture}
\begin{minipage}{0.55\textwidth}
\begin{itemize}
\item Minimizes the amount of data stored (i.e. no redundances).
\item The source layer is the only physical layer (i.e. no separation).
\item A middleware provides the \ac{dwh} features.
\end{itemize}
\end{minipage}
\hfill
\begin{minipage}{0.4\textwidth}
\centering
\includegraphics[width=\linewidth]{img/_1layer_dwh.pdf}
\end{minipage}
\subsection{Two-layer architecture}
\marginnote{Two-layer architecture}
\begin{minipage}{0.55\textwidth}
\begin{itemize}
\item Source data (source layer) are physically separated from the \ac{dwh} (data warehouse layer).
\item A staging layer applies \ac{etl} procedures before populating the \ac{dwh}.
\item The \ac{dwh} is a centralized repository from which data marts can be created.
Metadata repositories store information on sources, staging and data marts schematics.
\end{itemize}
\end{minipage}
\hfill
\begin{minipage}{0.4\textwidth}
\centering
\includegraphics[width=\linewidth]{img/_2layer_dwh.pdf}
\end{minipage}
\subsection{Three-layer architecture}
\marginnote{Three-layer architecture}
\begin{minipage}{0.45\textwidth}
\begin{itemize}
\item A reconciled layer enhances the cleaned data coming from the staging step by
adding enterprise-level details (i.e. adds more redundancy before populating the \ac{dwh}).
\end{itemize}
\end{minipage}
\hfill
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=\linewidth]{img/_3layer_dwh.pdf}
\end{minipage}
\section{Conceptual modeling}
\begin{description}
\item[\Acl{dfm} (\acs{dfm})] \marginnote{\Acl{dfm} (\acs{dfm})}
Conceptual model to support the design of data marts.
The main concepts are:
\begin{descriptionlist}
\item[Fact]
Concept relevant to decision-making processes (e.g. sales).
\item[Measure]
Numerical property to describe a fact (e.g. profit).
\item[Dimension]
Property of a fact with a finite domain (e.g. date).
\item[Dimensional attribute]
Property of a dimension (e.g. month).
\item[Hierarchy]
A tree where the root is a dimension and nodes are dimensional attributes (e.g. date $\rightarrow$ month).
\item[Primary event]
Occurrence of a fact. It is described by a tuple with a value for each dimension and each measure.
\item[Secondary event]
Aggregation of primary events.
Measures of primary events are aggregated if they have the same (preselected) dimensional attributes.
\end{descriptionlist}
\end{description}
\begin{figure}[ht]
\centering
\includegraphics[width=0.8\textwidth]{img/dfm.png}
\caption{Example of \ac{dfm}}
\end{figure}
\begin{figure}[ht]
\centering
\includegraphics[width=0.5\textwidth]{img/dfm_events.png}
\caption{Example of primary and secondary events}
\end{figure}
\subsection{Aggregation operators}
Measures can be classified as:
\begin{descriptionlist}
\item[Flow measures] \marginnote{Flow measures}
Evaluated cumulatively with respect to a time interval (e.g. quantity sold).
\item[Level measures] \marginnote{Level measures}
Evaluated at a particular time (e.g. number of products in inventory).
\item[Unit measures] \marginnote{Unit measures}
Evaluated at a particular time but expressed in relative terms (e.g. unit price).
\end{descriptionlist}
Aggregation operators can be classified as:
\begin{descriptionlist}
\item[Distributive] \marginnote{Distributive operators}
Able to calculate aggregates from partial aggregates (e.g. \texttt{SUM}, \texttt{MIN}, \texttt{MAX}).
\item[Algebraic] \marginnote{Algebraic operators}
Requires a finite number of support measures to compute the result (e.g. \texttt{AVG}).
\item[Holistic] \marginnote{Holistic operators}
Requires an infinite number of support measures to compute the result (e.g. \texttt{RANK}).
\end{descriptionlist}
\begin{description}
\item[Additivity] \marginnote{Additive measure}
A measure is additive along a dimension if an aggregation operator can be applied.
\begin{table}[ht]
\centering
\begin{tabular}{l | c | c}
& \textbf{Temporal hierarchies} & \textbf{Non-temporal hierarchies} \\
\hline
\textbf{Flow measures} & \texttt{SUM}, \texttt{AVG}, \texttt{MIN}, \texttt{MAX} & \texttt{SUM}, \texttt{AVG}, \texttt{MIN}, \texttt{MAX} \\
\textbf{Level measures} & \texttt{AVG}, \texttt{MIN}, \texttt{MAX} & \texttt{SUM}, \texttt{AVG}, \texttt{MIN}, \texttt{MAX} \\
\textbf{Unit measures} & \texttt{AVG}, \texttt{MIN}, \texttt{MAX} & \texttt{AVG}, \texttt{MIN}, \texttt{MAX} \\
\end{tabular}
\caption{Allowed operators for each measure type}
\end{table}
\end{description}
\subsection{Logical design}
\marginnote{Logical design}
Defining the data structures (e.g. tables and relationships) according to a conceptual model.
There are mainly two strategies:
\begin{descriptionlist}
\item[Star schema] \marginnote{Star schema}
A fact table that contains all the measures and linked to dimensional tables.
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{img/logical_star_schema.png}
\caption{Example of star schema}
\end{figure}
\item[Snowflake schema] \marginnote{Snowflake schema}
A star schema variant with partially normalized dimension tables.
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{img/logical_snowflake_schema.png}
\caption{Example of snowflake schema}
\end{figure}
\end{descriptionlist}