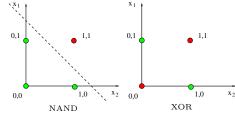
Deep Learning

Last update: 28 February 2024

Contents

1	Neu	al networks expressivity	1
	1.1	Perceptron	1
		Multi-layer perceptron	

1 Neural networks expressivity


1.1 Perceptron

Single neuron that defines a binary threshold through a hyperplane:

$$\begin{cases} 1 & \sum_{i} w_i x_i + b \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Expressivity A perceptron can represent a NAND gate but not a XOR gate.

Perceptron expressivity

Remark. Even if NAND is logically complete, the strict definition of a perceptron is not a composition of them.

1.2 Multi-layer perceptron

Composition of perceptrons.

Shallow neural network Neural network with one hidden layer.

Shallow NN

Deep neural network Neural network with more than one hidden layer.

Deep NN

Expressivity Shallow neural networks allow to approximate any continuous function

Multi-layer perceptron expressivity

$$f: \mathbb{R} \to [0,1]$$

Remark. Still, deep neural networks allow to use less neural units.