
Natural Language Processing
Last update: 19 January 2026

Academic Year 2024 – 2025
Alma Mater Studiorum · University of Bologna

https://github.com/NotXia/unibo-ai-notes/blob/pdfs/year2/natural-language-processing/nlp.pdf

Contents

1. Basic text processing 1
1.1. Regular expressions . 1

1.1.1. Basic operators . 1
1.2. Tokenization . 2

1.2.1. Data-driven tokenization . 3
1.3. Normalization . 4
1.4. Edit distance . 5

2. Language models 6
2.1. Spelling correction . 6
2.2. Language models . 8
2.3. Metrics . 9

2.3.1. Extrinsic evaluation . 9
2.3.2. Intrinsic evaluation . 9

2.4. N-gram model problems . 10
2.4.1. Overfitting . 10
2.4.2. Out-of-vocabulary tokens . 10
2.4.3. Unseen sequences . 10

3. Text classification 12
3.1. Common tasks . 12
3.2. Classification . 12
3.3. Naive Bayes . 12

3.3.1. Optimizations . 14
3.3.2. Properties . 15

3.4. Logistic regression . 15
3.4.1. Properties . 16

3.5. Metrics . 16
3.5.1. Binary classification . 16
3.5.2. Multi-class classification . 16
3.5.3. Cross-validation . 17
3.5.4. Statistical significance . 17

3.6. Affective meaning . 18
3.6.1. Emotion . 19

4. Semantics embedding 20
4.1. Traditional semantic representation . 20

4.1.1. Sense relations . 20
4.1.2. Common ontologies . 20
4.1.3. Word relations . 20

4.2. Vector semantics . 21
4.2.1. Sparse embeddings . 21
4.2.2. Dense non-contextual embeddings 24

i

4.3. Embeddings properties . 27
4.3.1. Embeddings similarity . 27
4.3.2. Embeddings analysis . 28

5. Recurrent neural networks 30
5.1. Architectures . 30

5.1.1. (Elman) recurrent neural network 30
5.1.2. Long short-term memory . 31
5.1.3. Gated recurrent units . 32
5.1.4. Bidirectional RNN . 32
5.1.5. Stacked multi-layer RNN . 33

5.2. Applications . 33

6. Attention-based architectures 35
6.1. Encoder-decoder RNN with attention . 35
6.2. Convolutional neural networks for NLP . 36
6.3. Transformer decoder (for language modelling) 37

6.3.1. Self-attention . 37
6.3.2. Embeddings . 38
6.3.3. Transformer block . 39

7. Large language models 41
7.1. Decoder-only architecture . 41

7.1.1. Decoding strategies . 41
7.1.2. Pre-training . 43
7.1.3. Fine-tuning . 43

7.2. Encoder-only architecture . 44
7.2.1. Pre-training . 44
7.2.2. Fine-tuning . 45

7.3. Encoder-decoder architecture . 46
7.3.1. Pre-training . 46

8. Efficient model utilization 47
8.1. Low-rank adaptation . 47
8.2. Model compression . 47

8.2.1. Parameters compression . 47
8.2.2. Training compression . 47

8.3. In-context learning . 48

9. Language model alignment and applications 50
9.1. Model alignment . 50

9.1.1. Instruction tuning . 50
9.1.2. Preference alignment . 51

10.Retrieval augmented generation (RAG) 52
10.1. Information retrieval . 52

10.1.1. Document embeddings . 52
10.1.2. Metrics . 54

10.2. Question answering . 55
10.2.1. Reading comprehension task . 55

ii

10.2.2. Metrics . 56
10.2.3. Retrieval-augmented generation for question answering 56

A. Task-oriented dialog systems 58
A.1. Human dialogs . 58
A.2. Task-oriented dialogs . 58

A.2.1. Architectures . 58
A.2.2. Dataset . 59

A.3. Research topics . 60
A.3.1. LLM domain portability . 60
A.3.2. LLM pragmatics . 60
A.3.3. LLM for dialog generation . 60

B. Speech processing 61
B.1. Audio representation . 61
B.2. Tasks . 62
B.3. Speech foundation models . 63

C. Italian LLMs 64

iii

1. Basic text processing

Text normalization Operations such as:

Tokenization TokenizationSplit a sentence in tokens.

Remark. Depending on the approach, a token is not always a word.

Lemmatization/stemming Lemmatiza-
tion/stemming

Convert words to their canonical form.

Example. {sang, sung, sings} 7→ sing

Sentence segmentation Sentence
segmentation

Split a text in sentences.

Remark. A period does not always signal the end of a sentence.

1.1. Regular expressions

Regular expression (regex) Regular expression
(regex)

Formal language to describe string patterns.

1.1.1. Basic operators

Disjunction (brackets) Match a single character between square brackets [].

Example. /[wW]oodchuck/ matches Woodchuck and woodchuck.

Range Match a single character from a range of characters or digits.

Example.

• /[A-Z]/ matches a single upper case letter.

• /[a-z]/ matches a single lower case letter.

• /[0-9]/ matches a single digit.

Negation Match the negation of a pattern.

Example. /[^A-Z]/ matches a single character that is not an upper case letter.

Disjunction (pipe) Disjunction of regular expressions separated by |.

Example. /groundhog|woodchuck/ matches groundhog and woodchuck.

Wildcards

Optional A character followed by ? can be matched optionally.

Example. /woodchucks?/ matches woodchuck and woodchucks.

Any . matches any character.

Kleene * A character followed by * can be matched zero or more times.

Kleene + A character followed by + must be matched at least once.

Counting A character followed by {n,m} must be matched from n to m times.

1

Example.

• {n} matches exactly n instances of the previous character.

• {n,m} matches from n to m instances of the previous character.

• {n,} matches at least n instances of the previous character.

• {,m} matches at most m instances of the previous character.

Anchors

Start of line ^ matches only at the start of line.

Example. /^a/ matches a but not ba.

End of line $ matches only at the end of line.

Example. /a$/ matches a but not ab.

Word boundary \b matches a word boundary character.

Word non-boundary \B matches a word non-boundary character.

Aliases

• \d matches a single digit (same as [0-9]).

• \D matches a single non-digit (same as [^\d]).

• \wmatches a single alphanumeric or underscore character (same as [a-zA-Z0-9]).

• \W matches a single non-alphanumeric and non-underscore character (same as
[^\w]).

• \s matches a single whitespace (space or tab).

• \S matches a single non-whitespace.

Capture group Operator to refer to previously matched substrings.

Example. In the regex:

/the (.*)er they were, the \1er they will be/

\1 should match the same content matched by (.*).

1.2. Tokenization

Lemma LemmaWords with the same stem and roughly the same semantic meaning.

Example. cat and cats are the same lemma.

Wordform WordformOrthographic appearance of a word.

Example. cat and cats do not have the same wordform.

Vocabulary VocabularyCollection of text elements, each indexed by an integer.

Remark. To reduce the size of a vocabulary, words can be reduced to lemmas.

Type / Wordtype Type / WordtypeElement of a vocabulary (i.e., wordforms in the vocabulary).

Token TokenInstance of a type in a text.

Genre GenreTopic of a text corpus (e.g., short social media comments, books, Wikipedia pages,
. . .).

2

Remark (Herdan’s law). Given a corpus with N tokens, a vocabulary V over that corpus
roughly have size:

|V | = kNβ

where the typical values are 10 ≤ k ≤ 100 and 0.4 ≤ β ≤ 0.6.

Stopwords StopwordsFrequent words that can be dropped.

Remark. If semantics is important, stopwords should be kept. LLMs keep stop-
words.

Rule-based tokenization Rule-based
tokenization

Hand-defined rules for tokenization.

Remark. For speed, simple tokenizers use regex.

Data-driven tokenization Data-driven
tokenization

Determine frequent tokens from a large text corpus.

1.2.1. Data-driven tokenization

Tokenization is done by two components:

Token learner Token learnerLearns a vocabulary from a given corpus (i.e., training).

Token segmenter Token segmenterSegments a given input into tokens based on a vocabulary (i.e., in-
ference).

Byte-pair encoding (BPE) Byte-pair encoding
(BPE)

Based on the most frequent n-grams.

Token learner Given a training corpus C, BPE determines the vocabulary as follows:

1. Start with a vocabulary V containing all the 1-grams of C and an empty
set of merge rules M .

2. Until the desired size of the vocabulary is reached:

a) Determine the pair of tokens t1 ∈ V and t2 ∈ V such that, among all
the possible pairs, the n-gram t1+ t2 = t1t2 obtained by merging them
is the most frequent in the corpus C.

b) Add t1t2 to V and the merge rule t1 + t2 to M .

Example. Given the following corpus:

Occurrences Tokens

5 l o w $
2 l o w e r $
6 n e w e s t $
6 w i d e s t $

The initial vocabulary is: V = {$, l, o, w, e, r, n, w, s, t, i, d}.
At the first iteration, e + s = es is the most frequent n-gram. Corpus and
vocabulary are updated as:

Occurrences Tokens

5 l o w $
2 l o w e r $
6 n e w es t $
6 w i d es t $

3

V = {$, l, o, w, e, r, n, w, s, t, i, d} ∪ {es}

At the second iteration, es+ t = est is the most frequent n-gram:

Occurrences Tokens

5 l o w $
2 l o w e r $
6 n e w est $
6 w i d est $

V = {$, l, o, w, e, r, n, w, s, t, i, d, es} ∪ {est}

And so on. . .

Token segmenter Given the vocabulary V and the merge rules M , the BPE seg-
menter does the following:

1. Split the input into 1-grams.

2. Iteratively scan the input and do the following:

a) Apply a merge rule if possible.

b) If no merge rules can be applied, lookup the (sub)word in the vocab-
ulary. Tokens out-of-vocabulary are marked with a special unknown
token [UNK].

WordPiece WordPieceSimilar to BPE with the addition of merge rules ranking and a special lead-
ing/tailing set of characters (usually ##) to identify subwords (e.g., new##, ##est
are possible tokens).

Unigram tokenization Unigram
tokenization

Starts with a big vocabulary and remove tokens following a loss
function.

1.3. Normalization

Normalization NormalizationConvert tokens into a standard form.

Example. U.S.A. and USA should be encoded using the same index.

Case folding Case foldingMap every token to upper/lower case.

Remark. Depending on the task, casing might be important (e.g., US vs us).

Lemmatization LemmatizationReduce inflections and variant forms to their base form.

Example. {am, are, is} 7→ be

Remark. Accurate lemmatization requires complete morphological parsing.

Stemming StemmingReduce terms to their stem.

Remark. Stemming is a simpler approach than lemmatization.

Porter stemmer Simple stemmer based on cascading rewrite rules.

Example. ational 7→ ate, ing 7→ ε, sses 7→ ss.

4

1.4. Edit distance

Minimum edit distance Minimum edit
distance

Minimum number of edit operations (insertions, deletions, and
substitutions) needed to transform a string into another one.

Remark. Dynamic programming can be used to efficiently determine the minimum
edit distance.

Levenshtein distance Levenshtein distanceMinimum edit distance where:

• Insertions cost 1,

• Deletions cost 1,

• Substitutions cost 2.

Example. The Levenshtein distance between intention and execution is 8.

I N T E * N T I O N

| | | | | | | | | |
* E X E C U T I O N

− ± ± + ±
1 2 2 1 2

5

2. Language models

2.1. Spelling correction

Spelling correction Spelling correctionSpelling errors can be of two types:

Non-word spelling Typos that result in non-existing words. Possible candidates can
be determined though a dictionary lookup.

Real-word spelling Can be:

Typographical error Typos that result in existing words.

Cognitive error Due to words similarity (e.g., piece vs peace).

Noisy channel model Noisy channel modelAssumes that the observable input is a distorted form of the original
word. A decoder tests word hypotheses and selects the best match.

More formally, we want a model of the channel that, simi-
larly to Bayesian inference, determines the likelihood that
a word w ∈ V is the original word for a noisy one x. From
there, we can estimate the correct word ŵ:

ŵ = argmax
w∈V

P (w|x)

By applying (i) Bayes’ rule, (ii) the fact that ŵ is inde-
pendent of P (x), and (iii) that a subset C ⊆ V of the
vocabulary can be used, the estimate becomes:

ŵ = argmax
w∈C

P (x|w)︸ ︷︷ ︸
channel model

P (w)︸ ︷︷ ︸
prior

Moreover, it is reasonable to include a context c when com-
puting the prior:

ŵ = argmax
w∈C

P (x|w)︸ ︷︷ ︸
channel model

P (w|c)︸ ︷︷ ︸
language model

Noisy channel spelling method Spelling correction in a noisy channel model can be done
as follows:

1. Find candidate words with similar spelling to the input based on a distance
metric (e.g., Damerau-Levenshtein which is the Levenshtein distance with the
addition of adjacent transpositions).

2. Score each candidate based on the language and channel model:

• Use typing features of the user.

• Use local context.

• Use a confusion matrix with common mistakes.

6

Example. Consider the sentence:

[...] was called a “stellar and versatile acress whose com-
bination of sass and glamour has defined her [...]”

By using the Corpus of Contemporary American English (COCA), we can determine the
following words as candidates:

actress · cress · caress · access · across · acres

Language model By considering a language model without context, the priors are com-
puted as P (w|∅) = count(w)

|COCA| (where |COCA| = 404 253 213):

w count(w) P (w|∅)

actress 9321 0.0000231
cress 220 0.000000544
caress 686 0.00000170
access 37 038 0.0000916
across 120 844 0.000299
acres 12 874 0.0000318

Channel model By using a confusion matrix of common typos, the channel model is:

w x|w P (x|w)

actress c|ct 0.000117
cress a|# 0.00000144
caress ac|ca 0.00000164
access r|c 0.000000209
across e|o 0.0000093
acres es|e 0.0000321
acres ss|s 0.0000342

The ranking is the obtained as:

w P (x|w)P (w|∅)

actress 2.7 · 10−9

cress 0.00078 · 10−9

caress 0.0028 · 10−9

access 0.019 · 10−9

across 2.8 · 10−9

acres 1.02 · 10−9

acres 1.09 · 10−9

Therefore, the most likely correction of acress for this model is across.
If the previous word is considered in the context, the relevant tokens of the new language
model are:

wi−1 wi P (wi|wi−1)

versatile actress 0.000021
versatile across 0.000021
actress whose 0.001
across whose 0.000006

7

This allows to measure the likelihood of a word within its context as:

P (versatile actress whose) = P (actress|versatile)P (whose|actress) = 210 · 10−10

P (versatile across whose) = P (across|versatile)P (whose|across) = 1 · 10−10

Finally, we have that:

P (versatile actress whose|versatile acress whose) = (2.7 · 10−9) · (210 · 10−10)

P (versatile across whose|versatile acress whose) = (2.8 · 10−9) · (1 · 10−10)

So actress is the most likely correction for acress in this model.

Remark. In practice, log-probabilities are used to avoid underflows and to make compu-
tation faster (i.e., sums instead of products).

2.2. Language models

(Probabilistic) language model Language modelModel to determine the probability of a word w in a
given context c:

P (w|c)
Usually, it is based on counting statistics and uses as context the sequence of previous
tokens:

P (wi|w1, . . . , wi−1)

This is equivalent to computing the probability of the whole sentence, which ex-
panded using the chain rule becomes:

P (w1, . . . , wi−1, wi) = P (w1)P (w2|w1)P (w3|w1..2) . . .P (wn|w1..n−1)

=
n∏

i=1

P (wi|w1..i−1)

Remark. Simply counting the number of occurrences of a sentence as
P (wi|w1..i−1) = w1..i/w1..i−1 is not ideal as there are too many possible sentences.

Markov assumption Markov assumption
in language models

Limit the length of the context to a window of k previous tokens:

P (wi|w1..i−1) ≈ P (wi|wi−k..i−1)

P (w1..n) ≈
n∏

i=1

P (wi|wi−k..i−1)

Unigram model Model without context (k = 0):

P (w1..n) ≈
∏
i

P (wi)

Bigram model Model with a single token context (k = 1):

P (w1..n) ≈
∏
i

P (wi|wi−1)

N-gram model N -gram modelModel with a context of k = N − 1 tokens:

P (w1..n) ≈
∏
i

P (wi|wi−N+1..i−1)

8

Remark. N -gram models cannot capture long-range dependencies.

Estimating N-gram probabilities Consider the bigram case, the probability
that a token wi follows wi−1 can be determined through counting:

P (wi|wi−1) =
count(wi−1, wi)

count(wi−1)

Remark. N -gram models cannot handle unknown tokens.

Remark. N -gram models capture knowledge about:

• Grammar and syntax.

• Some information about the dataset (e.g., domain, genre of corpus, cul-
tural aspects, . . .).

Generation by sampling Generation by
sampling

Randomly sample tokens from the distribution of a language
model.

Remark. In N -gram models (N ≥ 2), the distribution changes depending on the
previously sampled tokens.

2.3. Metrics

2.3.1. Extrinsic evaluation

Extrinsic/downstream evaluation Extrinsic evaluationCompare the performance of different models on spe-
cific tasks.

Remark. Extrinsic evaluation is the best approach for comparing different models, but
it is often computationally expensive.

2.3.2. Intrinsic evaluation

Intrinsic evaluation Intrinsic evaluationMeasure the quality of a model independently of the task.

Perplexity (PP) PerplexityProbability-based metric based on the inverse probability of a sequence
(usually using the test set) normalized by the number of words:

P (w1..N) =
∏
i

P (wi|w1..i−1)

PP(w1..N) = P (w1..N)−
1
N ∈ [1,+∞]

Generally, a lower perplexity represents a better model.

Example. For bigram models, perplexity is computed as:

P (w1..N) ≈
∏
i

P (wi|wi−1) PP(w1..N) = N

√∏
i

1

P (wi|wi−1)

Remark (Perplexity intuition). Perplexity can be seen as a measure of surprise of
a language model when evaluating a sequence.
Alternatively, it can also be seen as a weighted average branching factor (i.e., av-
erage number of possible unique next words that follow any word accounting for
their probabilities). For instance, consider a vocabulary of digits and a training cor-
pus where every digit appears with uniform probability 0.1. The perplexity of any

9

sequence using a 1-gram model is:

PP(w1..N) =
(
0.1N

)− 1
N = 10

Now consider a training corpus where 0 occurs 91% of the time and the other digits
1% of the time. The perplexity of the sequence 0 0 0 0 0 3 0 0 0 0 is:

PP(0 0 0 0 0 3 0 0 0 0) =
(
0.919 · 0.01

)− 1
10 ≈ 1.73

Remark. Minimizing perplexity is the same as maximizing the probability of the
tokens.

Remark. Perplexity can be artificially reduced by using a smaller vocabulary.
Therefore, it is only reasonable to compare perplexity of models with the same
vocabulary.

Remark. Perplexity is generally a bad approximation of extrinsic metrics and only
works well if the test set is representative of the training data. Therefore, it is only
useful to guide experiments and the final evaluation should be done through extrinsic
evaluation.

2.4. N-gram model problems

2.4.1. Overfitting

OverfittingN -gram models become better at modeling the training corpus for increasing values of N .
This risks overfitting and does not allow to obtain a generalized model.

Example. A 4-gram model is able to nearly perfectly generate sentences from Shake-
speare’s works.

2.4.2. Out-of-vocabulary tokens

There are two types of vocabulary systems:

Closed vocabulary system Closed vocabularyAll words that can occur are known.

Open vocabulary system Open vocabularyUnknown words are possible. They are usually handled using
a dedicated token <UNK> which allows to turn an open vocabulary system into a closed
one:

• Use a vocabulary and model all other words as <UNK>.

• Model infrequent words as <UNK>.

Remark. The training set must contain <UNK> tokens to estimate its distribution
as it is treated as any other token.

2.4.3. Unseen sequences

Only for n-grams that occur enough times a representative probability can be estimated.
For increasing values of n, the sparsity grows causing many unseen n-grams that produce
a probability of 0, with the risk of performing divisions by zero (e.g., when computing
perplexity) or zeroing probabilities (e.g., when applying the chain rule).

10

Laplace smoothing Laplace smoothingAdds 1 to all counts and renormalizes them. Given a vocabulary V
and an N -gram model, smoothing is done as follows:

PLaplace(wi|wi−N+1..i−1) =
count(wi−N+1..i−1wi) + 1

count(wi−N+1..i−1) + |V |

Alternatively, by only changing the numerator, it can be formulated using an ad-
justed count as:

PLaplace(wi|wi−N+1..i−1) =
c∗

count(wi−N+1..i−1)

c∗ =
(
count(wi−N+1..i−1wi) + 1

) count(wi−N+1..i−1)

count(wi−N+1..i−1) + |V |

where
count(wi−N+1..i−1)

count(wi−N+1..i−1)+|V | is a normalization factor.

Example. For a 2-gram model, Laplace smoothing is computed as:

PLaplace(wi|wi−1) =
count(wi−1wi) + 1

count(wi−1) + |V |

Or by using the adjusted count as:

PLaplace(wi|wi−1) =
c∗

count(wi−1)
c∗ =

(
count(wi−1wi) + 1

) count(wi−1)

count(wi−1) + |V |

11

3. Text classification

3.1. Common tasks

Sentiment analysis/Opinion mining Sentiment
analysis/Opinion
mining

Detection of attitudes. It can involve detecting:

• The holder of attitude (i.e., the source).

• The target of attitude (i.e., the aspect).

• The type of attitude (e.g., positive or negative).

• The text containing the attitude.

Spam detection

Language identification

Authorship attribution

Subject category classification

3.2. Classification

Classification task Classification taskGiven an input x and a set of possible classes Y = {y1, . . . , yM}, a
classifier determines the class ŷ ∈ Y associated to x.

Classification can be:

Rule-based Rule-basedBased on fixed (possibly handwritten) rules.

Example. Blacklist, whitelist, regex, . . .

In-context learning In-context learningProvide a decoder (i.e., generative) large language model a
prompt describing the task and the possible classes.

Example. Zero-shot learning, few-shot learning, . . .

Supervised machine learning Supervised machine
learning

Use a training set ofN labeled document-class data
points {(di, ci)} to fit a classifier.

An ML model can be:

Generative Informally, it learns the distribution of the data (i.e., P (di|ci)).
Discriminative Informally, it learns to exploit the features to determine the
class (i.e., P (ci|di)).

3.3. Naive Bayes

Bag-of-words (BoW) Bag-of-words (BoW)Representation of a document using the frequency of its words.

Given a vocabulary V and a document d, the bag-of-words embedding of d is a vector
in N|V | where the i-th position contains the number of occurrences of the i-th token
of V in d.

12

Multinomial naive Bayes classifier Multinomial naive
Bayes classifier

Generative probabilistic classifier based on the as-
sumption that features are independent given the class.

Given a document d = {w1, . . . , wn}, a naive Bayes classifier returns the class ĉ with
maximum posterior probability:

ĉ = argmax
c∈C

P (c|d)

= argmax
c∈C

P (d|c)︸ ︷︷ ︸
likelihood

P (c)︸ ︷︷ ︸
prior

= argmax
c∈C

P (w1, . . . , wn|c)P (c)

≈ argmax
c∈C

∏
i

P (wi|c)P (c)

= argmax
c∈C

∑
i

logP (wi|c) logP (c)

Given a training set D and a vocabulary V , P (wi|c) and P (c) are determined during
training by maximum likelihood estimation as follows:

P (c) =
Nc

|D|
P (wi|c) =

count(wi, c)∑
v∈V count(v, c)

where Nc is the number of documents of class c and count(w, c) counts the occur-
rences of the word w in the training samples of class c.

Remark. Laplace smoothing is used to avoid zero probabilities.

Remark. Stop words can be removed from the training set as they are usually not
relevant.

Remark. The likelihood part of the equation (
∑

i logP (wi|c)) can be seen as a set
of class-specific 1-gram language models.

Example. Given the following training set for sentiment analysis with two classes:

Class Document

- just plain boring

- entirely predictable and lacks energy

- no surprises and very few laughs

+ very powerful

+ the most fun film of the summer

We want to classify the sentence “predictable with no fun”. Excluding stop words
(i.e., with), we need to compute:

P (+|predictable with no fun) = P (+)P (predictable|+)P (no|+)P (fun|+)
P (-|predictable with no fun) = P (-)P (predictable|-)P (no|-)P (fun|-)

A vocabulary of 20 tokens can be used to represent the training samples. The required
likelihoods and priors with Laplace smoothing are computed as:

P (+) =
2

5
P (predictable|+) = 0 + 1

9 + 20
P (no|+) = 0 + 1

9 + 20
P (fun|+) = 1 + 1

9 + 20

P (-) =
3

5
P (predictable|-) = 1 + 1

14 + 20
P (no|-) = 1 + 1

14 + 20
P (fun|-) = 0 + 1

14 + 20

13

3.3.1. Optimizations

Possible optimizations for naive Bayes applied to sentiment analysis are the following:

Binarization BinarizationGenerally, the information regarding the occurrence of a word is more im-
portant than its frequency. Therefore, instead of applying bag-of-words by counting,
it is possible to produce a one-hot encoded vector to indicate which words are in the
document.

Negation encoding Negation encodingTo encode negations, two approaches can be taken:

Negation annotation Add to negated words an annotation so that they are treated
as a new word.

Example. Prepend NOT_ to each word between a negation and the next punc-
tuation:

didn’t like this movie. 7→ didn’t NOT_like NOT_this NOT_movie.

Parse tree Build a tree to encode the sentiment and interactions of the words. By
propagating the sentiments bottom-up, it is possible to determine the overall
sentiment of the sequence.

Example. The parse tree for the sentence “This film doesn’t care about

cleverness, wit or any other kind of intelligent humor.” is the fol-
lowing:

Due to the negation (doesn’t), the whole positive sequence is negated.

Sentiment lexicon Sentiment lexiconIf training data is insufficient, external domain knowledge, such as
sentiment lexicon, can be used.

Example. A possible way to use a lexicon is to count the number of positive and
negative words according to that corpus.

Remark. Possible ways to create a lexicon are through:

• Expert annotators.

• Crowdsourcing in a two-step procedure:

1. Ask questions related to synonyms (e.g., which word is closest in meaning
to startle?).

2. Rate the association of words with emotions (e.g., how does startle asso-
ciate with joy, fear, anger, . . . ?).

• Semi-supervised induction of labels from a small set of annotated data (i.e.,

14

seed labels). It works by looking for words that appear together with the ones
with a known sentiment.

• Supervised learning using annotated data.

3.3.2. Properties

Naive Bayes has the following properties:

• It is generally effective with short sequences and fewer data samples.

• It is robust to irrelevant features (i.e., words that appear in both negative and
positive sentences) as they cancel out each other.

• It has good performance in domains with many equally important features (contrar-
ily to decision trees).

• The independence assumption might produce overestimated predictions.

Remark. Naive Bayes is a good baseline when experimenting with text classifications.

3.4. Logistic regression

Features engineering Features engineeringDetermine features by hand from the data (e.g., number of positive
and negative lexicon).

Binary logistic regression Binary logistic
regression

Discriminative probabilistic model that computes the joint dis-
tribution P (c|d) of the class c given the document d.

Given the input features x = [x1, . . . , xn], logistic regression computes the following:

σ

(
n∑

i=1

wixi + b

)
= σ(wx+ b)

where σ is the sigmoid function.

Loss The loss function should aim to maximize the probability of predicting the
correct label ŷ given the observation x. This can be expressed as a Bernoulli
distribution:

P (y|x) = ŷy(1− ŷ)1−y =

{
1− ŷ if y = 0

ŷ if y = 1

By applying a log-transformation and inverting the sign, this corresponds to
the cross-entropy loss in the binary case:

LBCE(ŷ, y) = − log(P (y|x)) = −[y log(ŷ) + (1− y) log(1− ŷ)]

Optimization As cross-entropy is convex, SGD is well suited to find the parameters
θ of a logistic regressor f over batches of m examples by solving:

argmin
θ

m∑
i=1

LBCE(ŷ
(i), f(x(i);θ)) + αR(θ)

where α is the regularization factor andR(θ) is the regularization term. Typical
regularization approaches are:

15

Lasso regression (L1) R(θ) = ∥θ∥1 =
∑n

j=1 |θj |.

Ridge regression (L2) R(θ) = ∥θ∥22 =
∑n

j=1 θ
2
j .

Multinomial logistic regression Multinomial logistic
regression

Extension of logistic regression to the multi-class case.
The joint probability becomes P (y = c|x) and softmax is used in place of the sigmoid.

Cross-entropy is extended over the classes C:

LCE(ŷ, y) = −
∑
c∈C

1{y = c} log(P (y = c|x))

3.4.1. Properties

Logistic regression has the following properties:

• It is generally effective with large documents or datasets.

• It is robust to correlated features.

Remark. Logistic regression is also a good baseline when experimenting with text clas-
sification.
As they are lightweight to train, it is a good idea to test both naive Bayes and logistic
regression to determine the best baseline for other experiments.

3.5. Metrics

3.5.1. Binary classification

Contingency table Contingency table2 × 2 table matching predictions to ground truths. It contains true
positives (TP), false positives (FP), false negatives (FN), and true negatives (TN).

Recall RecallTP
TP+FN

.

Precision PrecisionTP
TP+FP

.

Accuracy AccuracyTP+TN
TP+FP+FN+TN

.

Remark. Accuracy is a reasonable metric only when classes are balanced.

F1 score F1 score2·recall·precision
recall+precision

.

3.5.2. Multi-class classification

Confusion matrix Confusion matrixc× c table matching predictions to ground truths.

Precision/Recall Precision/RecallPrecision and recall can be defined class-wise (i.e., consider a class as
the positive label and the others as the negative).

Micro-average precision/recall Micro-average
precision/recall

Compute the contingency table of each class and collapse
them into a single table. Compute precision or recall on the pooled contingency
table.

Remark. This approach is sensitive to the most frequent class.

Macro-average precision/recall Macro-average
precision/recall

Compute precision or recall class-wise and then average
over the classes.

16

Remark. This approach is reasonable if the classes are equally important.

Remark. Macro-average is more common in NLP.

Example.

Figure 3.1.: Confusion matrix

Figure 3.2.: Class-wise contingency tables, pooled contingency ta-
ble, and micro/macro-average precision

3.5.3. Cross-validation

n-fold cross-validation n-fold
cross-validation

Tune a classifier on different sections of the training data:

1. Randomly choose a training and validation set.

2. Train the classifier.

3. Evaluate the classifier on a held-out test set.

4. Repeat for n times.

3.5.4. Statistical significance

p-value p-valueMeasure to determine whether a model A is outperforming a model B on a given
test set by chance (i.e., test the null hypothesis H0 or, in other words, test that there
is no relation between A and B).

Given:

• A test set x,

• A random variable X over the test sets (i.e., another test set),

• Two models A and B, such that A is better than B by δ(x) on the test set x,

17

the p-value is defined as:

p-value(x) = P (δ(X) > δ(x)|H0)

There are two cases:

• p-value(x) is big: the null hypothesis holds (i.e., P (δ(X) > δ(x)) is high under
the assumption that A and B are not related), so A outperforms B by chance.

• p-value(x) is small (i.e., < 0.05 or < 0.01): the null hypothesis is rejected, so A
actually outperforms B.

Bootstrapping test Bootstrapping testApproach to compute p-values.

Given a test set x, multiple virtual test sets x̄(i) are created by sampling with re-
placement (it is assumed that the new sets are representative). The performance
difference δ(·) is computed between two models and the p-value is determined as the
frequency of:

δ(x̄(i)) > 2δ(x)

Remark. δ(x) is doubled due to theoretical reasons.

Example. Consider two models A and B, and a test set x with 10 samples. From
x, multiple new sets (in this case of the same size) can be sampled. In the following
table, each cell indicates which model correctly predicted the class:

1 2 3 4 5 6 7 8 9 10 A% B% δ(·)

x AB A AB B A B A AB – A 0.7 0.5 0.2

x̄(1) A AB A B B A B AB – AB 0.6 0.6 0.0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

A possible way to sample x̄(1) is (w.r.t. the indexes of the examples in x)
[2, 3, 3, 2, 4, 6, 2, 4, 1, 9].

3.6. Affective meaning

The affective meaning of a text corpus can vary depending on:

Personality traits Stable behavior and personality of a person (e.g., nervous, anxious,
reckless, . . .).

Attitude Enduring sentiment towards objects or people (e.g., liking, loving, hating,
. . .).

Interpersonal stance Affective stance taken in a specific interaction (e.g., distant, cold,
warm, . . .).

Mood Affective state of low intensity and long duration often without an apparent
cause (e.g., cheerful, gloomy, irritable, . . .).

Emotion Brief response to an external or internal event of major significance (e.g.,
angry, sad, joyful, . . .).

Remark. Emotion is the most common subject in affective computing.

18

3.6.1. Emotion

Theory of emotion There are two main theories of emotion:

Basic emotions Basic emotionsDiscrete and fixed range of atomic emotions.

Remark. Emotions associated to a word might be in contrast. For instance,
in the NRC Word-Emotion Association Lexicon the word thirst is associated
to both anticipation and surprise.

Continuum emotions Continuum emotionsDescribe emotions in a 2 or 3 dimensional space with the
following features:

Valence Pleasantness of a stimulus.

Arousal Intensity of emotion.

Dominance Degree of control on the stimulus.

Remark. Valence is often used as a measure of sentiment.

19

4. Semantics embedding

4.1. Traditional semantic representation

Lemma/citation form LemmaSyntactic form of a word.

Example. The word pipe.

Word sense Word senseMeaning component of a word.

Polysemous lemma Lemma with multiple senses.

Example. Possible senses of the word pipe are: the music instrument, the
conduit to transport material,

Supersense SupersenseSemantic category for senses.

Word sense disambiguation (WSD) Word sense
disambiguation
(WSD)

Task of determining the correct sense of a word.

4.1.1. Sense relations

Synonym SynonymRelation of (near) identity between two senses of two different words (i.e., same
propositional meaning).

Remark (Principle of contrast). A different linguistic form is probably due to some,
maybe subtle, difference in meaning.

Antonym AntonymRelation of opposition, with respect to one feature of meaning, between two
senses. More specifically, antonyms can be:

• An opposition between two ends of a scale (e.g., long/short).

• A reversive (e.g., up/down).

Subordination SubordinationSpecificity (i.e., is-a) relation between two senses.

Example. car is a subordinate of vehicle.

Superordination SuperordinationGeneralization relation between two senses.

Example. furniture is a superordinate of lamp.

Meronym MeronymPart-of relation between two senses.

Remark. Relations among word senses can be seen as a graph.

4.1.2. Common ontologies

WordNet WordNetDatabase of semantic relations of English words.

BabelNet BabelNetMultilingual database of semantic relations.

4.1.3. Word relations

Word similarity Word similarityMeasure the meaning similarity of words (i.e., relation between words
and not senses).

20

Remark. Working with words is easier than senses.

Example. Cat and dog are not synonyms but have similar meaning (i.e., pets).

Word relatedness Word relatednessMeasure the context relation of words.

Example. car/bike are similar while car/fuel are related but not similar.

Semantic field Semantic fieldWords that cover a particular domain and have structured relations
with each other.

Example. In the context of a hospital, surgeon, scalpel, nurse, anesthetic,
and hospital belong to the same semantic field.

Topic model Topic modelUnsupervised method to cluster the topics in a document based
on how a word is used in its context.

Semantic frames Semantic framesWords that describe the perspective or participants of a particular
event.

Example. In a commercial transaction, a buyer trades money with a seller

in return of some good or service.

Semantic role labeling (SRL) Semantic role
labeling (SRL)

Task of determining the frames and their se-
mantic role.

4.2. Vector semantics

Connotation ConnotationAffective meaning of a word.

Remark. As described in Section 3.6, emotions can be represented in a vector space.
Therefore, word meanings can also be represented as vectors.

Vector semantics intuitions Vector semantics lay on two intuitions:

Distributionalism intuition Distributionalism
intuition

The meaning of a word is defined by its environment
or distribution (i.e., neighboring words). Words with a similar distribution are
likely to have the same meaning.

Vector intuition Vector intuitionDefine the meaning of a word as a point in an N -dimensional
space.

Embedding EmbeddingVector representation of a word where words with a similar meaning are
nearby in the vector space.

Two common embedding models are:

TF-IDF TF-IDFSparse embedding based on the counts of nearby words.

Word2vec Word2vecDense embedding learned by training a classifier to distinguish nearby
and far-away words.

4.2.1. Sparse embeddings

Co-occurrence matrix Co-occurrence
matrix

Matrix representing the frequency that words occur with the oth-
ers.

Different design choices can be considered:

• Matrix design.

• Reweighing.

21

• Dimensionality reduction.

• Vector comparison metric.

Matrix design Shape and content of the co-occurrence matrix.

Term-document matrix Term-document
matrix

Given a vocabulary V and a set of documents D, a term-
document matrix has shape |V | × |D| and counts the occurrences of each word
in each document.

Remark. This representation allows to encode both documents (i.e., by con-
sidering the matrix column-wise) and words (i.e., by considering the matrix
row-wise).

Example. An excerpt of a possible term-document matrix for Shakespeare is:

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

The representation for the document As You Like It is [1, 114, 36, 20], while the
representation of the word battle is [1, 0, 7, 13].

Word-word matrix Word-word matrixGiven a vocabulary V , a word-word matrix has shape |V |× |V |.
Rows represent target words and columns are context words. Given a training
corpus, the word at each row is represented by counting its co-occurrences with
the others within a context of N words.

Remark. A larger context window captures more semantic information. A
smaller window captures more syntactic information.

Example. A possible word-word matrix is:

aardvark . . . computer data result pie sugar . . .

cherry 0 . . . 2 8 9 442 25 . . .
strawberry 0 . . . 0 0 1 60 19 . . .
digital 0 . . . 1670 1683 85 5 4 . . .

information 0 . . . 3325 3982 378 5 13 . . .

Reweighing Rescale the vectors to emphasize important features and down-weigh irrele-
vant words.

Remark (Frequency paradox). Raw frequencies are not an ideal representation for
words as they are skewed and not discriminative. Moreover, overly frequent words
(e.g., stop words) do not provide context information.

Term frequency-inverse document frequency (TF-IDF) Term
frequency-inverse
document frequency
(TF-IDF)

Based on term-document
occurrences. Given a word t and a document d, it is computed as:

tf-idf(t, d) = tf(t, d) · idf(t)

where:

22

Term frequency (tf) Log-transformed frequency count of a word t in a doc-
ument d:

tf(t, d) =

{
1 + log10 (count(t, d)) if count(t, d) > 0

0 otherwise

Inverse document frequency (idf) Inverse occurrence count of a word t
across all documents:

idf(t) = log10

(
count(t)

dft

)
where dft is the number of documents in which the term t occurs.

Remark. Words that occur in a few documents have a high idf. There-
fore, stop words, which appear often, have a low idf and are down-
weighted.

Example. Consider the term-document matrix with tf in parentheses:

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 (1) 0 (0) 7 (1.845) 13 (2.114)
good 114 (3.057) 80 (2.903) 62 (2.792) 89 (2.949)
fool 36 (2.553) 58 (2.763) 1 (1) 4 (1.602)
wit 20 (2.301) 15 (2.176) 2 (1.301) 3 (1.477)

Assume that the df and idf of the words are:

Word df idf

battle 21 0.246
good 37 0
fool 36 0.012
wit 34 0.037

The resulting TF-IDF weighted matrix is:

As You Like It Twelfth Night Julius Caesar Henry V

battle 0.246 0 0.454 0.520
good 0 0 0 0
fool 0.030 0.033 0.001 0.002
wit 0.085 0.081 0.048 0.054

Positive point-wise mutual information (PPMI) Positive point-wise
mutual information
(PPMI)

Based on term-term occurrences.
Given a word w and a context word c, it determines whether they are correlated
or occur by chance as follows:

PPMI(w, c) = max {PMI(w, c), 0}

where:

Point-wise mutual information (PMI)

PMI(w, c) = log2

(
P (w, c)

P (w)P (c)

)
∈ (−∞,+∞)

where:

23

• The numerator is the probability that w and c co-occur by correlation.

• The denominator is the probability that w and c co-occur by chance.

Remark. PMI > 1 indicates correlated co-occurrence. Otherwise, it is by
chance.

Remark (Weighting PPMI). PMI is biased towards infrequent events and returns
very high values for them. This can be solved by either:

• Using add-k smoothing (typically, k ∈ [0.1, 3]).

• Slightly increasing the probability of rare context words such that Pα(c) =
count(c)α∑
c′ count(c

′)α (typically, α = 0.75).

Example. Consider the term-term matrix:

computer data result pie sugar count(w)

cherry 2 8 9 442 25 486
strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(c) 4977 5673 473 512 61 11716

The PPMI between information and data con be computed as:

P (information, data) =
3982

11716
= 0.3399

P (information) =
7703

11716
= 0.6575

P (data) =
5673

11716
= 0.4872

PPMI(information, data) = max

{
log2

(
0.3399

0.6575 · 0.4872

)
, 0

}
= 0.0944

Remark. Reweighing loses information about the magnitude of the counts.

Dimensionality reduction Reduce the dimensionality of the embeddings.

Vector comparison Metric to determine the distance of two embeddings.

Dot product w · v =
∑n

i=1wivi.

Length Compare the length |v| =
√∑n

i=1 v
2
i of the vectors.

Cosine similarity w·v
|w| |v| .

4.2.2. Dense non-contextual embeddings

Remark. Dense embeddings are usually:

• Easier to process with machine learning algorithms.

• Able to generalize better than simply counting.

• Handle synonyms better.

24

Neural language modeling Neural language
modeling

Use a neural network to predict the next word wn+1 given an
input sequence w1..n. The general flow is the following:

1. Encode the input words into one-hot vectors (N|V |×n).

2. Project the input vectors with an embedding matrix E ∈ Rd×|V | that encodes
them into d-dimensional vectors.

3. Pass the embedding into the hidden layers.

4. The final layer is a probability distribution over the vocabulary (R|V |×1).

Figure 4.1.: Example of neural language model with a context of 3 tokens

Remark. The embedding matrix E can be used independently to embed words.
In fact, by construction, the i-th column of E represents the embedding of the i-th
token of the vocabulary.

Training Given a text corpus, training is done sequentially in a self-supervised man-
ner by sliding a context window over the sequence. At each iteration, the next
word is predicted and cross-entropy is used as loss.

Remark. The initial embedding matrix is usually initialized using statistical
methods and not randomly.

Word2vec Word2vecWord embedding framework that encodes a target word based on the context
words near it.

Two training variants are available in Word2vec:

Continuous bag-of-words (CBOW) Given the context words, predict the target
word.

Skip-gram Given the target word, predict the (position independent) context
words.

25

Skip-gram model Skip-gram modelGiven a context word c and a target word w, a classifier is trained
to determine whether c appears in the context of w. After training, the weights
of the classifier are used as the skip-gram model to embed words.

Remark. In practice, for an easier optimization, the skip-gram model learns
two sets of embeddings W ∈ R|V |×d and C ∈ R|V |×d for the target and context
words, respectively. Therefore, it has two sets of parameters θ = ⟨W ,C⟩. At
the end, they can either be averaged, concatenated, or one can be dropped.

Training (softmax) Given the target word w and context word c, and their
embeddings w and c, the skip-gram model computes their similarity as the
dot product. The probability that c is in the context of w is then computed
though a softmax as:

P (c|w;θ) = exp(c ·w)∑
v∈V exp(v ·w)

Given a training sequence w1, . . . , wT and a context window of size m,
training is done by iterating over each possible target word wt and consid-
ering the conditional probabilities of its neighbors. Then, the loss is defined
as the average negative log-likelihood defined as follows:

L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

j ̸=0

log (P (wt+j |wt;θ))

Remark. Due to the normalization factor over the whole vocabulary, using
softmax for training is expensive.

Training (negative sampling) Skip-gram with
negative sampling
(SGNS)

Use a binary logistic regressor as classifier. The
two classes are:

• Context words within the context window (positive label).

• Randomly sampled words (negative label).

The probabilities can be computed as:

P (+|w, c;θ) = σ(c ·w) P (-|w, c;θ) = 1− P (+|w, c;θ)

It is assumed context-independent words, therefore, if the context is a se-
quence, the probability is computed as follows:

P (+|w, c1..L;θ) =
L∏
i=1

σ(ci ·w)

At each iteration, the batch is composed of a single positive examples andK
negative examples randomly sampled according to their weighted unigram
probability Pα(w) =

count(w)α∑
v∈V count(v)α (α it used to give rarer words a slightly

higher probability).

Given a batch, the loss is defined as:

L(θ) = − log

(
P (+|w, cpos;θ)

K∏
i=1

P (-|w, cnegi ;θ)

)

= −

(
log (σ(cpos ·w)) +

K∑
i=1

log (σ(−cnegi ·w))

)

26

fastText fastTextExtension of Word2vec based on subwords to deal with out-of-vocabulary words.

A word is represented both as itself and a bag of n-grams. Both whole words and n-
grams have an embedding. The overall embedding of a word is represented through
the sum of its constituent n-grams.

Example. With n = 3, the word where is represented both as <where> and <wh,
whe, her, ere, re> (< and > are boundary characters).

GloVe GloVeBased on the term-term co-occurrence (within a window) probability matrix that
indicates for each word its probability of co-occurring with the other words.

The objective is to learn two sets of embeddings θ = ⟨W ,C⟩ such that their simi-
larity is close to their log-probability of co-occurring. Given the term-term matrix
X, the loss for a target word w and a context word c is defined as:

L(θ) = (c ·w − log(X[c, w]))2

Remark. Empirically, for GloVe it has been observed that the final embedding
matrix obtained as W +C works better.

Example. A possible term-term co-occurrence probability for the words ice and
steam is the following:

k = solid k = gas k = water k = fashion

P (k|ice) 1.9× 10−4 6.6× 10−5 3.0× 10−3 1.7× 10−5

P (k|steam) 2.2× 10−5 7.8× 10−4 2.2× 10−3 1.8× 10−5

ice is more likely to co-occur with solid while steam is more likely to co-occur with
gas. GloVe uses this information when determining the embeddings.

4.3. Embeddings properties

4.3.1. Embeddings similarity

Context size Context sizeThe window size used to collect counts or determine context words can result
in different embeddings.

As a general rule, smaller windows tend to capture more syntactic features while a
larger window encodes more topically related but not necessarily similar words.

Similarity orders Similarity ordersTwo words have:

First-order co-occurrence If they are nearby each other.

Second-order co-occurrence If they have similar context words.

Relational similarity Relational similarityDense embeddings are able to capture relational meanings.

27

Parallelogram model Given the problem “a is to b as a∗ is to b∗” (a : b :: a∗ : b∗),
the parallelogram model solves it as:

b∗ = argmin
x

distance(x, b− a+ a∗)

Example. In Word2vec, the following operation between embeddings can be
done:

Paris− France+ Italy ≈ Rome

Remark. Even if it sometimes works, parallelogram model is not guaranteed
to always produce the expected result.

4.3.2. Embeddings analysis

Word history Word historyTrained on different corpora, dense embeddings can provide a semantic
evolution of words by analyzing its neighboring embeddings.

Example.

Figure 4.2.: Neighboring embeddings of the same words encoded using
Word2vec trained on different corpora from different decades

Example.

Figure 4.3.: Sentiment for the word terrific analyzed using the em-
beddings obtained by training on different corpora

Cultural bias Cultural biasEmbeddings reflect implicit biases in the training corpus.

Implicit association test Determine how associated are concepts and attributes.

Example. Using the parallelogram model to solve:

father : doctor :: mother : x

The closest words for x are homemaker, nurse, receptionist, . . .

Example. African-American and Chinese names are closer to unpleasant words
compared to European-American names.

Example. Using the Google News dataset as training corpus, there is a corre-
lation between the women bias in job words embeddings and the percentage of
women over men in those jobs.

28

Woman bias for a word w is computed as:

dwomen(w)− dmen(w)

where dwomen(w) is the average embedding distance between words representing
women (e.g., she, female, . . .) and the word w. The same idea is applied to
dmen(w).

Figure 4.4.: Relationship between the relative percentage of women
in an occupation and the women bias.

Figure 4.5.: Average women bias vs average women occupation dif-
ference over time.

29

5. Recurrent neural networks

5.1. Architectures

5.1.1. (Elman) recurrent neural network

Recurrent neural network (RNN) Recurrent neural
network (RNN)

Neural network that processes a sequential input. At
each iteration, an input is fed to the network and the hidden activation is computed
considering both the input and the hidden activation of the last iteration.

Figure 5.1.: RNN unrolled in time

RNN language model (RNN-LM) RNN language
model (RNN-LM)

Given an input word w(t), an RNN-LM does the fol-
lowing:

1. Compute the embedding e(t) of w(t).

2. Compute the hidden state h(t) considering the hidden state h(t−1) of the pre-
vious step:

h(t) = f(Wee
(t) +Whh

(t−1) + b1)

3. Compute the output vocabulary distribution ŷ(t):

ŷ(t) = softmax(Uh(t) + b2)

4. Repeat for the next token.

30

Remark. RNN-LMs allow to generate the output autoregressively.

Training Given the predicted distribution ŷ(t) and ground-truth y(t) at step t, the
loss is computed as the cross-entropy:

L(t)(θ) = −
∑
v∈V

y(t)
v log

(
ŷ(t)
v

)
Teacher forcing Teacher forcingDuring training, as the ground-truth is known, the input at

each step is the correct token even if the previous step outputted the wrong
value.

Remark. This allows to stay closer to the ground-truth and avoid com-
pletely wrong training steps.

Remark. RNNs grow in width and not depth, and cannot be parallelized.

5.1.2. Long short-term memory

Remark (Vanishing gradient). In RNNs, the gradient of distant tokens vanishes through
time. Therefore, long-term effects are hard to model.

Long short-term memory (LSTM) Long short-term
memory (LSTM)

Architecture where at each step t outputs:

Hidden state h(t) ∈ Rn as in RNNs.

Cell state c(t) ∈ Rn with the responsibility of long-term memory.

Gates Non-linear operators to manipulate the cell state (in the following part, W∗,
U∗, and b∗ are parameters).

Forget gate Forget gateControls what part of the cell state to keep:

f (t) = σ
(
Wfh

(t−1) +Ufx
(t) + bf

)
Input gate Input gateControls what part of the input to write in the cell state:

i(t) = σ
(
Wih

(t−1) +Uix
(t) + bi

)
Output gate Output gateControls what part of the cell state to include in the output

hidden state:
o(t) = σ

(
Woh

(t−1) +Uox
(t) + bo

)
Updates are done as follows:

New cell state content c̃(t) = tanh
(
Wch

(t−1) +Ucx
(t) + bc

)
.

Cell state c(t) = f (t) · c(t−1) + i(t) · c̃(t).
Hidden state h(t) = o(t) · tanh(c(t)).

Remark. LSTMs make it easier to preserve information over time, but they might
still be affected by the vanishing gradient problem.

31

~

5.1.3. Gated recurrent units

Gated recurrent units (GRU) Gated recurrent
units (GRU)

Simpler architecture than LSTMs with fewer gates and
without the cell state.

Gates

Update gate Update gateControls what part of the current hidden state to keep:

u(t) = σ
(
Wuh

(t−1) +Uux
(t) + bu

)
Reset gate Reset gateControls what part of the previous hidden state to use:

r(t) = σ
(
Wrh

(t−1) +Urx
(t) + br

)
Updates are done as follows:

New hidden state content h̃
(t)

= tanh
(
Wh(r

(t) · h(t−1)) +Uhx
(t) + bh

)
.

Hidden state h(t) = (1− u(t)) · h(t−1) + u(t) · h̃(t)
.

Remark. Being faster to train than LSTMs, GRUs are usually a good starting point.

5.1.4. Bidirectional RNN

Bidirectional RNN Bidirectional RNNTwo independent RNNs (of any architecture) that processes the input
left-to-right (forward) and right-to-left (backward), respectively. Usually, the output

hidden state of a token t is obtained as the concatenation of the hidden states h
(t)
forward

and h
(t)
backward of both networks.

Remark. This architecture is not for language modelling (i.e., autoregressive models) as
it is assumed that the whole input sequence is available at once.

32

Example (Sequence classification). For sequence classification, the last hidden state of
the forward and backward contexts can be used as the representation of the whole sequence
to pass to the classifier.

5.1.5. Stacked multi-layer RNN

Stacked RNN Stacked RNNStack of RNNs (of any architecture) where:

• The RNN at the first layer l = 1 processes the input tokens.

• The input of any following layer l ≥ 2 is the hidden state h
(t)
l−1 of the previous

layer.

Remark. Skip connections between different layers can help to stabilize the gradient.

5.2. Applications

Autoregressive generation Autoregressive
generation

Repeatedly sample a token and feed it back to the network.

Decoding strategy Decoding strategyMethod to select the output token from the output distribution.
Possible approaches are:

Greedy Select the token with the highest probability.

Sampling Randomly sample the token following the probabilities of the out-
put distribution.

Conditioned generation Conditioned
generation

Provide an initial hidden state to the RNN (e.g., speech-
to-text).

Sequence labeling Sequence labelingAssign a class to each input token (e.g., POS-tagging, named-entity
recognition, structure prediction, . . .).

Sequence classification Sequence
classification

Assign a class to the whole input sequence (e.g., sentiment anal-
ysis, document-topic classification, . . .).

Sentence encoding Sentence encodingProduce a vector representation for the whole input sequence. Pos-
sible approaches are:

• Use the final hidden state of the RNN.

33

• Aggregate all the hidden states (e.g., mean).

Example (Question answering). The RNN encoder embeds the question that is
used alongside the context (i.e., source from which the answer has to be extracted)
to solve a labeling task (i.e., classify each token of the context as non-relevant or
relevant).

34

6. Attention-based architectures

Sequence-to-sequence (seq2seq) model Sequence-to-
sequence (seq2seq)
model

Encoder-decoder architecture where:

Encoder Processes the whole input sequence and outputs a representation of it.

Decoder Processes the output of the encoder and produces the output sequence.

Remark. Training is usually done using teacher forcing and averaging the loss of
each output distribution.

Figure 6.1.: Example of seq2seq network with RNNs

6.1. Encoder-decoder RNN with attention

Seq2seq RNN with attention Seq2seq RNN with
attention

Architecture where the decoder can interact with each to-
ken processed by the encoder to determine dot-product attention scores (i.e., based
on vector similarity).

The overall flow is the following:

1. The encoder computes its hidden states h(1), . . . ,h(N) ∈ Rh.

2. The decoder processes the input tokens one at the time beginning with a
<start> token. Its hidden state is initialized with h(N). Consider the token at
position t, the output is determined as follows:

a) The decoder outputs the hidden state s(t).

b) Attention scores e(t) are determined as the dot product between s(t) and
h(i):

e(t) =
[
s(t) · h(1) · · · s(t) · h(N)

]
∈ RN

e(t) is used to determine the attention distribution α(t) that is required to
obtain the attention output a(t) as the weighted sum of the encoder hidden
states:

RN ∋ α(t) = softmax(e(t))

Rh ∋ at =

N∑
i=1

α
(t)
i h(i)

35

c) The overall representation of the t-th token is the concatenation of the
attention and decoder output:[

a(t) | s(t)
]
∈ R2h

6.2. Convolutional neural networks for NLP

1D convolution (NLP) 1D convolutionApply a kernel on a sequence of tokens within a window. A kernel
of size k with d-dimensional token embeddings is represented by a k×d weight matrix.

Remark. As in computer vision, multiple kernels can be stacked to increase the
depth of the representation. Padding, stride, and dilation can also be used to change
the receptive field. Pooling is also performed before passing to fully-connected layers.

Figure 6.2.: Example of three 1D convolutions with padding 1

Remark. Convolutions are easy to parallelize.

Example (CNN for sentence classification). A possible multichannel CNN architecture
for sentence classification works as follows:

• The input sequence is encoded by stacking both static and learned embeddings (of
the same dimensionality).

• Convolutions are applied to each channel. They can work with different widths.

• Pooling is used to flatten the activations and avoid shape mismatch before passing
through fully-connected layers.

36

Example (Character-aware neural LM).

RNN-LM that works on the character level:

• Given a token, each character is embedded and
concatenated.

• Convolutions are used to refine the representa-
tion.

• Pooling is used before passing the representation
to the RNN.

6.3. Transformer decoder (for language modelling)

6.3.1. Self-attention

Self-attention Self-attentionComponent that allows to compute the representation of a token consid-
ering the other ones in the input sequence.

Given an input embedding xi ∈ R1×dmodel , self-attention relies on the following val-
ues:

Queries QueriesUsed as the reference point for attention:

R1×dk ∋ qi = xiWQ

Keys KeysUsed as values to compare against the query:

R1×dk ∋ ki = xiWK

Values ValuesUsed to determine the output:

R1×dv ∋ vi = xiWV

where WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , and WV ∈ Rdmodel×dv are parameters.

Then, the attention weights αi,j between two embeddings xi and xj are computed
as:

score(xi,xj) =
qikj√
dk

αi,j = softmaxj ([score(xi,x1), . . . , score(xi,xT)])

37

The output ai ∈ R1×dv is a weighted sum of the values of each token:

ai =
∑
t

αi,tvt

To maintain the input dimension, a final projection WO ∈ Rdv×dmodel is applied.

Causal attention Causal attentionSelf-attention mechanism where only past tokens can be used to deter-
mine the representation of a token at a specific position. It is computed by modifying
the standard self-attention as follows:

∀j ≤ i : score(xi,xj) =
qikj√
dk

∀j > i : score(xi,xj) = −∞

αi,j = softmaxj ([score(xi,x1), . . . , score(xi,xT)])

ai =
∑
t:t≤i

αi,tvt

Figure 6.3.: Score matrix with causal attention

6.3.2. Embeddings

Input embedding Input embeddingThe input is tokenized using standard tokenizers (e.g., BPE, Sentence-
Piece, . . .). Each token is then encoded using a learned embedding matrix.

38

Positional encoding Positional encodingLearned position embeddings to encode positional information are
added to the input token embeddings.

Remark. Without positional encoding, transformers are invariant to permutations.

6.3.3. Transformer block

Transformer block Transformer blockModule with the same input and output dimensionality (i.e., allows
stacking multiple blocks) composed of:

Multi-head attention Multi-head attentionUses h different self-attention blocks with different queries,

keys, and values. Value vectors are of size dv
h . The final projection WO is

applied on the concatenation of the outputs of each head.

Feedforward layer Fully-connected 2-layer network applied at each position of the
attention output:

FFN(xi) = ReLU(xiW1 + b1)W2 + b2

Where the hidden dimension dff is usually larger than dmodel.

Normalization layer Applies layer normalization (i.e., normalize each sequence of
the batch independently) to help training stability.

Residual connection Helps to propagate information during training.

Remark (Residual stream). An interpretation of residual connections is that of
residual stream where the input token is enhanced by the output of multi-head
attention and the feedforward network.

39

Figure 6.4.: Overall attention block

Language modeling head Language modeling
head

Takes as input the output corresponding to a token of the
transformer blocks stack and outputs a distribution over the vocabulary.

40

7. Large language models

7.1. Decoder-only architecture

Conditional generation Conditional
generation

Generate text conditioned on the input tokens (i.e., prompt).

Example (Sentiment analysis). Given the prompt:

p = the sentiment of the sentence ‘I like Jackie Chan’ is

Determine the probability of the tokens positive and negative:

P (positive | p) P (negative | p)
Example (Question answering). Given the prompt:

p = Q: who wrote the book ‘The origin of Species’? A:

Determine the tokens of the answer autoregressively:

argmax
w1

P (w1 | p), argmax
w2

P (w2 | pw1), . . .

7.1.1. Decoding strategies

Greedy decoding Greedy decodingSelect the next token as the most probable of the output distribution.

Remark. Greedy decoding risks getting stuck in a local optimum.

Example. Consider the following search tree of possible generated sequences:

Greedy search would select the sequence yes yes

which has probability 0.5 · 0.4 = 0.2. However, the
sequence ok ok has a higher probability of 0.4 ·
0.7 = 0.28.

41

Beam search Beam searchGiven a beam width k, perform a breadth-first search keeping at each
branching level the top-k tokens based on the probability of that sequence com-
puted as:

log (P (y | x)) =
t∑

i=1

log (P (yi | x, y1, . . . , yi−1))

Example. Consider the following tree with beam width k = 2:

The selected sequence is [BOS] the green witch arrived [EOS].

Remark. As each path might generate sequences of different length, the score is
usually normalized by the number of tokens as:

log (P (y | x)) = 1

t

t∑
i=1

log (P (yi | x, y1, . . . , yi−1))

Remark. The likelihood of the sequences generated using beam search is higher
than using greedy decoding. However, beam search is still not optimal.

Sampling SamplingSample the next token based on the output distribution.

Random sampling Sample considering the distribution over the whole vocabulary.

Remark. By adding-up all the low-probability words (which are most likely
unreasonable as the next token), their actual chance of getting selected is rela-
tively high.

Temperature sampling Skew the distribution to emphasize the most likely words
and decrease the probability of less likely ones. Given the logits u and the
temperature τ , the output distribution y is determined as:

y = softmax
(u
τ

)
where:

• Higher temperatures (i.e., τ > 1) allow for considering low-probability
words.

• Lower temperatures (i.e., τ ∈ (0, 1]) focus on high-probability words.

Remark. For τ → 0, generation becomes closer to greedy decoding.

Top-k sampling Consider the top-k most probable words and apply random sam-
pling on their normalized distribution.

42

Remark. k = 1 corresponds to greedy decoding.

Remark. k is fixed and does not account for the shape of the distribution.

Top-p/nucleus sampling Consider the most likely words such that their probabil-
ity mass adds up to p. Then, apply random sampling on their normalized
distribution.

7.1.2. Pre-training

Pre-training Pre-trainingUse self-supervision and teacher forcing to train the whole context window
in parallel on a large text corpus.

Remark. Results are highly dependent on the training corpora. Important aspects
to consider are:

Language Most of the available data is in English.

Data quality Prefer high-quality sources such as Wikipedia or books. Boilerplate
removal and deduplication might be needed.

Safety filtering Toxicity removal might be needed

Ethical and legal issues Use of copyrighted material, permission from data own-
ers, use of private information, . . .

Scaling laws Scaling lawsEmpirical laws that put in relationship:

• Non-embedding parameters N (N ≈ 2dmodelnlayer(2dattention + dff)),

• Training data size D,

• Compute budget C (i.e., training iterations).

By keeping two of the three factors constant, the loss L of an LLM can be estimated
as a function of the third variable:

L(N) =

(
Nc

N

)αN

L(D) =

(
Dc

D

)αD

L(C) =

(
Cc

C

)αC

where Nc, Dc, Cc, αN , αD, and αC are constants determined empirically based on
the model architecture.

7.1.3. Fine-tuning

Fine-tuning Fine-tuningSpecialize an LLM to a specific domain or task.

Continued pre-training Continued
pre-training

Continue pre-training with a domain-specific corpus.

Model adaptation Specialize a model by adding new learnable parameters.

Task-specific fine-tuning Task-specific
fine-tuning

Add a new trainable head on top of the model.

Parameter-efficient fine-tuning (PEFT) Parameter-efficient
fine-tuning (PEFT)

Continue training a selected subset
of parameters (e.g., LoRA in Section 8.1).

Supervised fine-tuning Supervised
fine-tuning

Continue training using a supervised dataset to align the
model to human’s expectation.

43

7.2. Encoder-only architecture

Transformer encoder Transformer encoderArchitecture that produces contextual embeddings by considering
both left-to-right and right-to-left context.

Remark. This architecture performs feature extraction and is more suited for clas-
sification tasks.

Architecture Similar to a transformer decoder, but self-attention is not causal.

Contextual embedding Contextual
embedding

Represent the meaning of word instances (i.e., in a dynamic man-
ner depending on the surroundings).

Remark (Sequence embedding). Encoders usually have a classifier token (e.g.,
[CLS]) to model the whole sentence.

Example (Word sense disambiguation). Task of determining the sense of each word
of a sequence. Senses usually come from an existing ontology (e.g., WordNet). An
approach to solve the problem is the following:

1. Compute the embeddings vi of the words using a pre-trained encoder (e.g.,
BERT).

2. Represent the embedding of a sense as the average of the tokens of that sense:

vs =
1

n

∑
i

vi

3. Predict the sense of a word t as:

arg max
s∈senses(t)

distance(t,vs)

Tokenizer fertility Tokenizer fertilityAverage amount of tokens used to represent words.

Remark. Tokenizer fertility is relevant for inference speed.

Curse of multilinguality Curse of
multilinguality

The performance of each language of a multilingual model tend
to be worse than its monolingual counterpart.

7.2.1. Pre-training

Masked language modeling Masked language
modeling

Task of predicting missing or corrupted tokens in a sequence.

Remark. Transformer encoders output embeddings. For training purposes, a head
to output a distribution over the vocabulary is added.

Example. Given a training corpus, BERT is trained by randomly sampling 15% of
the tokens in the training data and either:

• Mask it with a special [MASK] token (80% of the time).

44

• Replace it with a different token (10% of the time).

• Do nothing (10% of the time).

Remark. BERT’s training approach is inefficient as masks are determined before
training and only 15% of the corpus tokens are actually used for training. Other
models (e.g., RoBERTa), dynamically determine the mask at training time, allowing
for more variety.

Span masking Span maskingMask contiguous spans of words to obtain a harder training objective.

Remark. This approach generally produces better embeddings.

7.2.2. Fine-tuning

Fine-tuning for classification Add a classification head on top of the classifier token.

Fine-tuning for sequence-pair classification Use a model pre-trained to process pair of
sequences. This is usually done by means of a special separator token (e.g., [SEP]
in BERT).

Fine-tuning for sequence labeling Add a classification head on top of each token. A
conditional random field (CRF) layers can also be added to produce globally more
coherent tags.

Example (Named entity recognition (NER)). Task of assigning to each word of a
sequence its entity class. NER taggers usually also capture concepts spanning across
multiple tokens. To achieve this, additional information is provided with the entity
class:

Begin Starting token of a concept.

Inside Token belonging to the same span of the previous one.

End Last token of a span.

Outside Token outside the scope of the tagger.

Metrics

Recall Correctly labeled responses
Total that should have been labeled

Precision Correctly labeled responses
Total that has been labeled

Remark. The entity (so, also a span of text) is the atomic unit for NER
metrics.

45

Remark (GLUE). The General Language Understanding Evaluation (GLUE) benchmark
is a common set of tasks used to evaluate natural language understanding models. It com-
prises tasks based on single sentences, multiple sentences, and inference from a sequence.

7.3. Encoder-decoder architecture

Encoder-decoder architecture Encoder-decoder
architecture

Model with both an encoder and decoder:

Encoder Architecture as presented in Section 7.2. Its result is used to condition
the output of the decoder.

Decoder Architecture similar to the one presented in Section 7.1 with an addi-
tional cross-attention layer inserted before causal attention.

Cross-attention Cross-attentionAttention layer that uses the output of the encoder as keys
and values, while the query is from the decoder.

7.3.1. Pre-training

Span corruption Span corruptionGiven an input sequence, replace different-length spans of text with a
unique placeholder. The encoder takes as input the corrupted sequence, while the
decoder has to predict the missing words.

Remark. It has been observed that targeted span masking works better compared
to random span masking.

Example. Given the sequence:

<bos> thank you for inviting me to your party last week <eos>

Some spans of text are masked with placeholder tokens as follows:

<bos> thank you <X> me to your party <Y> week <eos>

The masked sequence is passed through the encoder, while the decoder has to predict
the masked tokens:

<bos> <X> for inviting <Y> last <Z> <eos>

46

8. Efficient model utilization

8.1. Low-rank adaptation

Low-rank adaptation (LoRA) Low-rank adaptation
(LoRA)

Method to update weights by learning an offset that uses
fewer parameters.

Consider a weight matrix W ∈ Rd×k, LoRA decomposes the update into two learn-
able matrices A ∈ Rd×r and B ∈ Rr×k (with r ≪ d, k). Weights update is performed
as:

Wfine-tuned = Wpre-trained +AB

8.2. Model compression

8.2.1. Parameters compression

Parameter sharing Parameter sharingUse the same parameters between layers.

Pruning PruningRemove weights with small impact on the loss.

Remark. Dropping some weights produce sparse matrices that are unoptimized for
parallel hardware. Therefore, this approach does not always improve efficiency.

Quantization QuantizationStore and perform operations with lower precision floating-points (e.g.,
FP32 to FP4).

8.2.2. Training compression

Mixture of experts Mixture of expertsSpecialize smaller models on subsets of data and train a router to
forward the input to the correct expert.

Remark. This approach can be easily deployed on distributed systems.

Knowledge distillation Knowledge
distillation

Train a student model to emulate the teacher’s hidden states. In
a general setting, the output distribution of the teacher is used to create the student.
Two losses are used:

47

Distillation loss Matches the output distribution of the student to the one of the
teacher. A softmax with higher temperature is usually used so that training
contribution does not only come from the highest probability.

Student loss Matches the output distribution of the student with the ground-
truth (i.e., same loss of the training task).

Vocabulary transfer Vocabulary transferUse a domain-specific tokenizer to reduce the number of tokens to
represent complex/domain-specific words and reduce the size of the embedding ma-
trix.

Fast vocabulary transfer (FVT) Fast vocabulary
transfer (FVT)

Given:

• A starting embedding model with tokenizer Ts, vocabulary Vs, and embed-
ding matrix Es,

• A new tokenizer Tdom trained on a domain-specific corpus,

The embedding matrix Edom for the vocabulary Vdom of Tdom is built as follows:

∀ti ∈ Vdom : Edom(ti) =
1

|Ts(ti)|
∑

tj∈Ts(ti)

Es(tj)

In other words, each token in Vdom is encoded as the average of the embeddings
of the tokens that compose it in the starting embedding model (if the token
appear in both vocabularies, the embedding is the same).

8.3. In-context learning

Prompting PromptingPass a prompt to the language model to condition generation.

More formally, a prompt is defined by means of a prompting function fprompt(·) that
formats an input text x. fprompt typically has a slot for the input and a slot for
the answer (e.g., the class in case of classification). The prompt is then fed to the
language model that searches the highest scoring word ẑ to fill the answer as follows:

ẑ = argmaxP (ffill(fprompt(x), z); θ)

Where ffill(fprompt(x), z) inserts z in the prompt. In other word, we are looking for
the word that makes the model least perplexed.

Example. A prompt for sentiment analysis of movie reviews might be:

[X] Overall, it was a [Z] movie.

Where [X] is the placeholder for the review and [Z] is for the class.

Remark. The prompt does not necessarily need to be text (i.e., discrete/hard
prompts). Continuous/soft prompts (i.e., embeddings) can also be used to condition

48

generation.

Zero-shot learning Zero-shot learningSolve a task by providing a language model the description of the
problem in natural language.

One-shot learning One-shot learningSolve a task by providing a language model the description of the
problem in natural language and a single demonstration (i.e., an example).

Few-shot learning Few-shot learningSolve a task by providing a language model the description of the
problem in natural language and a few demonstrations.

Remark. Empirical results show that not too many examples are required. Also,
too many examples might reduce performance.

Remark. Some studies show that an explanation for in-context learning is that causal
attention has the same effect of gradient updates (i.e., the left part of the prompt influences
the right part).
Another possible explanation is based on the concept of induction heads which are at-
tention heads that specialize in predicting repeated sequences (i.e., in-context learning is
seen as the capability of imitating past data). Ablation studies show that by identifying
and removing induction heads, the in-context learning performance of a model drastically
drops.

Figure 8.1.: Example of induction head

Prefix-tuning Prefix-tuningSoft prompting technique that learns some prefix embeddings for a specific
task to add to the prompt while keeping the rest of the model frozen.

Chain-of-thought prompting Chain-of-thought
prompting

Provide in the prompt examples of reasoning to make the
model generate the output step-by-step1.

Remark. Empirical results show that the best prompt for chain-of-thought is to
add to the prompt think step by step.

1

49

9. Language model alignment and
applications

9.1. Model alignment

Remark. Off-the-shelf pre-trained models tend to only be good at word completion. They
are most likely unable to understand instructions and might generate harmful content.

9.1.1. Instruction tuning

Instruction tuning Instruction tuningFine-tune a model on a dataset containing various tasks expressed in
natural language in the form (description, examples, solution), all usually formatted
using multiple templates.

Figure 9.1.: Example of templates for entailment detection

Remark. If done correctly, after performing instruction tuning on a model, it should
be able to also solve tasks that were not present in the tuning dataset.

Figure 9.2.: Comparison of tuning approaches

50

9.1.2. Preference alignment

Preference alignment Preference alignmentAlign the output of a model with human values.

Reinforcement learning with human feedback (RLHF) Reinforcement
learning with human
feedback (RLHF)

Align a language model using a
policy-gradient reinforcement learning algorithm. The problem can be formulated
as follows:

• The policy to learn represents the aligned model (i.e., prompt 7→ answermodel),

• Prompts are the states,

• Answers are the actions.

RLHF works as follows:

1. Start from a pre-trained language model that already works well.

2. Train a reward model rθ from a human-annotated dataset that maps text se-
quences into rewards. The architecture is usually based on transformers.

3. Fine-tune the language model (i.e., train the policy) using an RL algorithm
(e.g., PPO) and the learned reward model.

Given a prompt x and an answer y, the reward r used for the RL update is
computed as:

r = rθ(y | x)− λKLDKL(πPPO(y | x)∥πbase(y | x))

where:

• rθ(y | x) is the reward provided by the reward model.

• −λKLDKL(πPPO(y | x)∥πbase(y | x)) is a penalty based on the Kullback-
Leibler divergence to prevent the aligned model πPPO from moving too away
from the original model πbase (i.e., prevent the loss of language capabilities).

51

10. Retrieval augmented generation (RAG)

10.1. Information retrieval

Ad-hoc retrieval Ad-hoc retrievalGiven a query, provide an ordered list of relevant documents from some
(unstructured) collection.

To determine relevancy, query and documents are embedded in some form and com-
pared with a distance metric.

Inverted index Inverted indexMapping from terms to documents with pre-computed term frequencies
(and/or term positions). It allows narrowing down the document search space by
considering only those that match the terms in the query.

10.1.1. Document embeddings

TF-IDF embedding TF-IDF embeddingEmbed a document using the TF-IDF weighted term-document ma-
trix.

Document scoring Given a document d, a query q, and their respective embeddings
d and q, their similarity score is computed as their cosine similarity:

score(q, d) =
q · d

|q| · |d|

=
∑
t∈q

 tf-idf(t, q)√∑
qi∈q tf-idf

2(qi, q)
· tf-idf(t, d)√∑

di∈d tf-idf
2(di, d)


As query terms tend to have count 1 (i.e., ∀t ∈ q : tf-idf(t, q) ≈ idf(t), which
is already present in tf-idf(t, d)), tf-idf(t, q) can be dropped together with
its normalization factor |q| (which is the same for all documents). Then, the
score can be simplified and approximated to:

score(q, d) =
∑
t∈q

tf-idf(t, d)

|d|
=
∑
t∈q

tf-idf(t, d)√∑
di∈d tf-idf

2(di, d)

Example. Given:

• The query q = sweet love,

52

• The documents:

d1 = sweet sweet nurse! love?

d2 = sweet sorrow

d3 = how sweet is love?

d4 = nurse!

The embeddings of q and d1 are computed as follows:

Word Count tf tf-idf tf-idf/|q| Count tf tf-idf tf-idf/|d1|

sweet 1 1.000 0.125 0.383 2 1.301 0.163 0.357
nurse 0 0 0 0 1 1.000 0.301 0.661
love 1 1.000 0.301 0.924 1 1.000 0.301 0.661
how 0 0 0 0 0 0 0 0

sorrow 0 0 0 0 0 0 0 0
is 0 0 0 0 0 0 0 0

|q| =
√
0.1252 + 0.3012 = 0.326 |d1| =

√
0.1632 + 0.3012 + 0.3012 = 0.456

The overall score is therefore:

score(q, d1) = (0.383 · 0.357) + (0.924 · 0.610) = 0.137 + 0.610 = 0.747

By using the simplified formula, we have that:

Document |di| tf-idf(sweet) tf-idf(love) score

d1 0.456 0.163 0.301 1.017
d2 0.615 0.125 0 0.203
d3 0.912 0.125 0.301 0.467
d4 0.301 0 0 0

Okapi BM25 Okapi BM25TF-IDF variant with two additional parameters:

• k to balance between tf and idf,

• b to weigh the importance of document length normalization.

It is defined as follows:

BM25(q, d) =
∑
t∈q

idf(t)
tf(t, d) · (k + 1)

k ·
(
1− b+ b |d|

|davg|

)
+ tf(t, d)


where |davg| is the average document length, and typically k ∈ [1.2, 2] and b = 0.75.

Dense embedding Dense embeddingEmbed a document using a pre-trained encoder (e.g., BERT).

Document scoring Use nearest neighbor with the dot product as distance. To
speed-up search, approximate k-NN algorithms can be used.

53

10.1.2. Metrics

Precision/recall Precision/recallGiven:

• The set of documents returned by the system T ,

• The selected relevant documents R ⊆ T ,

• The selected irrelevant documents N ⊆ T ,

• All the relevant documents U ⊇ R.

Precision and recall are computed as:

precision =
|R|
|T |

recall =
|R|
|U |

Precision-recall curve Precision-recall
curve

Given a ranked list of documents, plot recall and precision by con-
sidering an increasing number of documents.

Interpolated precision Smoothed version of the precision-recall curve.

Consider recalls at fixed intervals and use as precision at position r the maxi-
mum of all the next ones:

precisioninterpolated(r) = max
i≥r

precision(i)

Average precision Average precisionAverage precision by considering the predictions up to a cut-off thresh-
old t. Given the relevant documents Rt in the first t predictions, average precision
is computed as:

APt =
1

|Rt|
∑
d∈Rt

precisiont(d)

where precisiont(d) is computed w.r.t. the position of the document d in the ranked
list.

Mean average precision Mean average
precision

Average AP over different queries Q:

mAPt =
1

|Q|
∑
q∈Q

APt(q)

Example. Consider the following ranked predictions:

Rank Relevant? Precisiont Recallt

1 Y 1.0 0.11
2 N 0.50 0.11
3 Y 0.66 0.22
4 N 0.50 0.22
5 Y 0.60 0.33
6 Y 0.66 0.44
7 N 0.57 0.44
8 Y 0.63 0.55
9 N 0.55 0.55
10 N 0.50 0.55
11 Y 0.55 0.66
12 N 0.50 0.66
13 N 0.46 0.66

Rank Relevant? Precisiont Recallt

14 N 0.43 0.66
15 Y 0.47 0.77
16 N 0.44 0.77
17 N 0.44 0.77
18 Y 0.44 0.88
19 N 0.42 0.88
20 N 0.40 0.88
21 N 0.38 0.88
22 N 0.36 0.88
23 N 0.35 0.88
24 N 0.33 0.88
25 Y 0.36 1.00

54

The precision-recall curve is the following:

Interpolated with 11 equidistant recall points, the curve is:

Average precision computed over all the predictions (i.e., t = 25) is:

AP =
1.0 + 0.66 + 0.60 + 0.66 + 0.63 + 0.55 + 0.47 + 0.44 + 0.36

9
= 0.6

10.2. Question answering

10.2.1. Reading comprehension task

Reading comprehension task Reading
comprehension task

Find a span of text in the document that answers a given
question.

More formally, given a question q and a passage p = p1, . . . , pm, the following is
computed for all tokens pi:

• The probability Pstart(i) that pi is the start of the answer span.

• The probability Pend(i) that pi is the end of the answer span.

Figure 10.1.: Example of span labeling architecture

55

Remark. A sliding window over the whole passage can be used if it is too long for
the context length of the model.

Remark. The classification token [CLS] can be used to determine whether there is
no answer.

10.2.2. Metrics

Exact match Exact matchRatio of match between predicted answer and the ground-truth computed
considering the characters at each position.

F1 score F1 scoreMacro F1 score computed by considering predictions and ground-truth as bag
of tokens (i.e., average token overlap).

Mean reciprocal rank Mean reciprocal
rank

Given a system that provides a ranked list of answers to a question
qi, the reciprocal rank for qi is:

RR =
1

ranki

where ranki is the index of the first correct answer in the provided ranked list. Mean
reciprocal rank is computed over a set of queries Q:

mRR =
1

|Q|

|Q|∑
i=1

1

ranki

10.2.3. Retrieval-augmented generation for question answering

Remark. Question answering with plain LLM prompting only is subject to the following
problems:

• Hallucinations.

• It is limited to the training data and cannot integrate a new knowledge base.

• Its knowledge might not be up-to-date.

RAG for QA RAG for QAGiven a question and a collection of documents, the answer is generated in
two steps by the following components:

Retriever Given the question, it returns the relevant documents.

Remark. The retriever should be optimized for recall.

Remark. A more complex pipeline can be composed of:

Rewriter Rewrites the question into a better format.

Retriever Produces a ranked list of relevant documents.

Reranker Reorders the retrieved documents for a more fine-grained ranking.

Reader Given the question and the relevant documents, it uses a backbone LLM
to generate the answer through prompting.

Remark. The current trend is to evaluate RAG performance with another LLM.

Remark. The collection of documents can also be a collection of passages or chunks of
predetermined length.

56

57

A. Task-oriented dialog systems

A.1. Human dialogs

Natural language dialog Natural language
dialog

Sequence of utterances (i.e., sentences) between two or more
participants where each takes a turn.

Turn-taking problem Turn-taking problemDetermine when the turn of another participant ended.

Speech/dialog act Speech/dialog actIndicates the type of utterance.

Example. Yes-no question, declarative question, statement, appreciation, yes an-
swer, . . .

Adjacency pairs Speech acts that commonly appear together.

Example. Question → answer.

Subdialog Dialogs opened and closed within a dialog.

Example. Correction subdialog, clarification subdialog, . . .

Dialog slot Dialog slotRelevant entities and properties of an utterance.

Filler Values assigned to a slot.

Conversation initiative Conversation
initiative

Who initiates the dialog.

User initiative The user asks questions and the system responds (e.g., FAQ).

System initiative The system asks questions to the user (e.g., form completion).

Mixed initiative Both the user and the system can ask questions.

Types of dialog Types of dialog

Information seeking To retrieve information.

Task-oriented Dialog to achieve a goal.

Argumentative Argument in support or against an opinion.

Explanatory Teacher-student type of dialog.

Recommendation Persuasion dialog.

Chit-chat Free conversation.

A.2. Task-oriented dialogs

A.2.1. Architectures

Traditional dialog system Traditional dialog
system

The main components of an artificial dialog system are:

58

Natural language understanding (NLU) Natural language
understanding
(NLU)

Extract the relevant information such as
dialog acts and slot-fillers from the utterance.

Remark. This task can be seen as a named entity recognition problem.

Figure A.1.: Example of neural architecture for slot filling

Dialog state tracker (DST) Dialog state tracker
(DST)

Maintains the history of the dialog. This component
should also have access to a knowledge-base.

Dialog policy manager Dialog policy
manager

Produces the dialog acts that composes the response from
the output of the DST.

Natural language generation (NLG) Natural language
generation (NLG)

Produces a natural language utterance from
the dialog acts produced by the dialog manager.

Figure A.2.: Example of components for a spoken dialog system

LLM for dialog system LLM for dialog
system

Use a language model that takes as input the utterance and di-
rectly produces a response.

A.2.2. Dataset

MultiWOZ MultiWOZCollection of human-human conversations over multiple domains and topics
annotated with dialog states (i.e., turns), slots, and acts.

The dataset also defines an ontology for slots and a knowledge-base.

59

Remark. Human annotations are determined by agreement between multiple an-
notators.

Remark. The type of dialogs in the dataset sensibly affects the resulting dialog
system.

Example. Wizard of Oz collection is a part of MultiWOZ that consists of question-
answer dialogs between a user and a wizard. Dialogs produced based on these might
result too artificial.

A.3. Research topics

A.3.1. LLM domain portability

Domain portability Domain portabilityAdapt a model to a new domain (i.e., knowledge-base).

Possible approaches are:

Fine-tuning Fine-tune the LLM with the new knowledge-base.

Remark. This approach is susceptible to the catastrophic forgetting problem.

Prompting Embed the new knowledge-base into the prompt of the LLM.

Remark. This approach risks hallucinations and is constrained to the limits
of the context length and computational inefficiency.

Functional calling Let the LLM query the knowledge-base when needed.

Remark. This approach requires more complex prompts and not all LLMs
support it.

Remark. Experimental results show that functional calling works better than em-
bedding the KB in the prompt. It is also more effective when the KB becomes
bigger.

A.3.2. LLM pragmatics

Pragmatics PragmaticsAbility to adapt a conversation based on the context.

Proactivity ProactivityAbility of providing useful but not explicitly requested information.

Remark. An LLM can be made more proactive by prompting or fine-tuning.

A.3.3. LLM for dialog generation

Automatic dialog generation Automatic dialog
generation

Use an LLM to generate and annotate dialogs to create a
synthetic dataset. A possible approach is based on the following steps:

Generation Use the LLM to generate a dialog. Possible approaches are:

One-pass Prompt the LLM to generate a dialog based on a few references.

Interactive Produce a dialog by conversing with the model.

Teacher-student Let two LLMs converse.

Annotation Prompt the LLM to annotate the generated dialog based on some
schema.

Evaluation Evaluate based on human opinion.

60

B. Speech processing

B.1. Audio representation

Sound/soundwave SoundwaveVibration that travels though a medium. It is modulated by:

Pitch Frequency of the vibrations.

Loudness Amplitude of the vibrations.

Waveform WaveformRepresentation of a soundwave. It is described by:

Frequency Represents the pitch of the sound.

Period Distance between two peaks of the sound (i.e., correlated to frequency as
f = 1

T).

Amplitude Represents the loudness of the sound (i.e., the air pressure).

Remark. In practice, amplitude is usually converted in decibels due to the
fact that the human auditory system perceives sound closer to a logarithmic
scale.

Signal SignalRepresentation of information.

Remark. In sound processing, the waveform itself is the signal.

Analog signal Analog signalWaveform as-is in the real world.

Digital signal Digital signalSampled (i.e., measure uniform time steps) and quantized (i.e., dis-
cretize values) version of an analog waveform.

Fourier transform Fourier transformMethod to decompose a continuous signal in its constituent sin waves.

Given a continuous signal x(t), its Fourier transform is:

X(f) =

∫ +∞

−∞
x(t)e−j2πft dt

where X(f) indicates how much of the frequency f exists in x(t).

Discrete Fourier transform (DFT) Discrete Fourier
transform (DFT)

Fourier transform for digital signals.

Given a discrete signal x[n], its DFT is:

X[k] =
N−1∑
n=0

x[n]e−
j2πkn

N

where k is the discrete frequency and N is the number of samples.

61

Fast Fourier transform (FFT) Fast Fourier
transform (FFT)

Efficient implementation of DFT for Ns that are
power of 2.

Short-time Fourier transform (STFT) Short-time Fourier
transform (STFT)

FFT computed on short time windows of
the sound signal.

Remark. This method allows preserving time information by using a fixed
frame size.
Spectrogram SpectrogramResult of STFT that shows how the frequencies change over time.

Inverse STFT (ISTFT) Inverse STFT
(ISTFT)

Converts a time-frequency representation of sound (i.e.,
spectrogram) to its sound signal.

Remark. This allows to manipulate a signal in its frequency domain (STFT)
and then convert it back (ISTFT).

Mel-scaled spectrogram Mel-scaled
spectrogram

Spectrogram where frequencies are mapped to the mel scale (i.e.,
lower frequencies are more fine-grained while higher frequencies are more compressed,
to match the human logarithmic sound perception).

Audio features Audio featuresRepresentation of a sound signal extracted from the waveform or spectro-
gram.

B.2. Tasks

Automatic speech recognition (ASR) Convert a sound signal into text.

Example. Use an RNN/transformer encoder-decoder architecture. A sound signal
is processed as follows:

1. Compute the audio features from the waveform (e.g., mel-spectrogram).

2. Pass the computed features through the encoder.

3. Use the decoder to generate the output text autoregressively conditioned on
the encoder.

62

Speech enhancement Clear the sound signal.

Speech separation Separate the different sources in a sound signal (e.g., differentiate
speakers).

Text-to-speech Convert text into a sound signal.

Example. Use an encoder-decoder architecture. A text is processed as follows:

1. Use the encoder to embed the input text into a representation that encodes
linguistic features (e.g., pronunciation, rhythm, . . .).

2. Use the decoder to predict a mel-spectrogram.

3. Use a neural vocoder to convert the mel-spectrogram into an audio waveform.

Speaker diarization Determine the moment and the person who spoke.

Speech emotion recognition Recognize emotions from the sound signal.

Neural network explanation Use speech to explain another speech.

B.3. Speech foundation models

Speech foundation model (SFM) Speech foundation
model (SFM)

Transformer-based model pre-trained on speech. A
common architecture is composed of:

Feature extractor Converts the waveform into a low-dimensional representation
(e.g., by using convolutions).

Encoder Computes contextual embeddings from the sound features.

Remark. SFM takes as input raw waveforms and are more robust in dealing with
speech variability due to diverse speakers, environment, noise, . . .

Remark. A SFM can be either fine-tuned for a specific task or used as a feature
extractor for other models.

Multimodal model Multimodal modelModel able to handle multiple modalities (e.g., speech and text).

The main considerations to take into account when working with multimodal models
are:

Representation Decide how to encode different modalities into the same embed-
ding space.

Fusion Combine information from different modalities.

Alignment Link corresponding elements (e.g., in time or by meaning) across dif-
ferent modalities.

Translation Map information from one modality to another.

Co-learning Leverage shared information between modalities for training.

63

C. Italian LLMs

Remark. Advantages of pre-training from scratch are:

• Having full control on the training data.

• Improve the fertility of the tokenizer.

Minerva MinervaLanguage model pre-trained on the Italian language.

Remark. Minerva’s pre-training corpus is actually composed of both Italian and
English datasets.
Initially, English was used for benchmarking due to the lack of Italian benchmarks.
However, it is also useful for tasks intrinsically in English (e.g., coding).

Remark. Some training datasets were automatically translated in Italian. Some
others were adapted from existing Italian ones (e.g., transform a question answering
dataset into a cloze form).

FENICE metric FENICE metricFactuality metric for summarization. It works as follows:

1. Extract claims from the summary with an ad-hoc LLM.

2. Align each claim with the original document with positive (if in support) and
negative (if against) scores.

3. Perform co-reference resolution to unify entities across claims.

ALERT benchmark ALERT benchmarkBenchmark to test the safeness of an LLM based on 32 risk categories.
The testing data were created as follows:

1. Filter the “Helpfulness & Harmlessness-RLHF” dataset of Anthropic by con-
sidering for each example the first prompt and red team (i.e., malicious) attacks
only.

2. Use templates to automatically generate additional prompts.

3. Augment the prompts by formatting them as adversarial attacks. Examples of
attacks are:

Prefix/suffix injection Prepend or append an adversarial prompt (e.g., disregard
the instructions above and ...).

Token manipulation Alter or invert a small fraction of tokens in the prompt
(the idea is to use a prompt that is less likely to have been already seen in
the alignment datasets).

Jailbreaking Use more complex strategies (e.g., role playing).

<end of course>

64

	Basic text processing
	Regular expressions
	Basic operators

	Tokenization
	Data-driven tokenization

	Normalization
	Edit distance

	Language models
	Spelling correction
	Language models
	Metrics
	Extrinsic evaluation
	Intrinsic evaluation

	N-gram model problems
	Overfitting
	Out-of-vocabulary tokens
	Unseen sequences

	Text classification
	Common tasks
	Classification
	Naive Bayes
	Optimizations
	Properties

	Logistic regression
	Properties

	Metrics
	Binary classification
	Multi-class classification
	Cross-validation
	Statistical significance

	Affective meaning
	Emotion

	Semantics embedding
	Traditional semantic representation
	Sense relations
	Common ontologies
	Word relations

	Vector semantics
	Sparse embeddings
	Dense non-contextual embeddings

	Embeddings properties
	Embeddings similarity
	Embeddings analysis

	Recurrent neural networks
	Architectures
	(Elman) recurrent neural network
	Long short-term memory
	Gated recurrent units
	Bidirectional RNN
	Stacked multi-layer RNN

	Applications

	Attention-based architectures
	Encoder-decoder RNN with attention
	Convolutional neural networks for NLP
	Transformer decoder (for language modelling)
	Self-attention
	Embeddings
	Transformer block

	Large language models
	Decoder-only architecture
	Decoding strategies
	Pre-training
	Fine-tuning

	Encoder-only architecture
	Pre-training
	Fine-tuning

	Encoder-decoder architecture
	Pre-training

	Efficient model utilization
	Low-rank adaptation
	Model compression
	Parameters compression
	Training compression

	In-context learning

	Language model alignment and applications
	Model alignment
	Instruction tuning
	Preference alignment

	Retrieval augmented generation (RAG)
	Information retrieval
	Document embeddings
	Metrics

	Question answering
	Reading comprehension task
	Metrics
	Retrieval-augmented generation for question answering

	Task-oriented dialog systems
	Human dialogs
	Task-oriented dialogs
	Architectures
	Dataset

	Research topics
	LLM domain portability
	LLM pragmatics
	LLM for dialog generation

	Speech processing
	Audio representation
	Tasks
	Speech foundation models

	Italian LLMs

