Machine Learning and Data Mining

Last update: 22 December 2023

Contents

	Intr	roduction	2
	1.1	Data	 2
		1.1.1 Data sources	 2
		1.1.2 Software	 2
		1.1.3 Insight	2
2	Dat	ta warehouse	4
	2.1	Online Analysical Processing (OLAP)	 4
		2.1.1 Operators	4
	2.2	Extraction, Transformation, Loading (ETL)	5
		2.2.1 Extraction	5
		2.2.2 Cleaning	5
		2.2.3 Transformation	6
		2.2.4 Loading	6
	2.3	Data warehouse architectures	6
		2.3.1 Single-layer architecture	7
		2.3.2 Two-layer architecture	7
		2.3.3 Three-layer architecture	7
	2.4	Conceptual modeling	8
		2.4.1 Aggregation operators	9
	2.5	Logical design	9
3	Dat	ta lake	11
J	3.1	Traditional vs insight-driven data systems	
	3.1	Data architecture evolution	
	$\frac{3.2}{3.3}$	Data architecture evolution	
		Components	
	0.0	Components	 12
	0.0	3.3.1 Data ingestion	 12 12
	3. 3	3.3.1 Data ingestion	 12 12 12
		3.3.1 Data ingestion	 12 12 12 13
	3.4	3.3.1 Data ingestion	12 12 12 13 13
		3.3.1 Data ingestion3.3.2 Storage3.3.3 Processing and analyticsArchitectures3.4.1 Lambda lake	12 12 13 13 13
		3.3.1 Data ingestion	12 12 13 13 13 13
	3.4	3.3.1 Data ingestion3.3.2 Storage3.3.3 Processing and analyticsArchitectures3.4.1 Lambda lake	12 12 13 13 13 13
4	3.4	3.3.1 Data ingestion 3.3.2 Storage 3.3.3 Processing and analytics Architectures 3.4.1 Lambda lake 3.4.2 Kappa lake 3.4.3 Delta lake Metadata	12 12 13 13 13 13 13 14
4	3.4 3.5 CRI	3.3.1 Data ingestion 3.3.2 Storage 3.3.3 Processing and analytics Architectures 3.4.1 Lambda lake 3.4.2 Kappa lake 3.4.3 Delta lake Metadata	12 12 13 13 13 13 14 15
4	3.4 3.5 CRI 4.1	3.3.1 Data ingestion 3.3.2 Storage 3.3.3 Processing and analytics Architectures 3.4.1 Lambda lake 3.4.2 Kappa lake 3.4.3 Delta lake Metadata ISP-DM Business understanding	12 12 13 13 13 13 13 14 15
4	3.4 3.5 CRI 4.1 4.2	3.3.1 Data ingestion 3.3.2 Storage 3.3.3 Processing and analytics Architectures 3.4.1 Lambda lake 3.4.2 Kappa lake 3.4.3 Delta lake Metadata SP-DM Business understanding Data understanding	12 12 12 13 13 13 13 14 15 15
4	3.4 3.5 CRI 4.1 4.2 4.3	3.3.1 Data ingestion 3.3.2 Storage 3.3.3 Processing and analytics Architectures 3.4.1 Lambda lake 3.4.2 Kappa lake 3.4.3 Delta lake Metadata SP-DM Business understanding Data understanding Data preparation	12 12 12 13 13 13 13 14 15 15 15
4	3.4 3.5 CRI 4.1 4.2	3.3.1 Data ingestion 3.3.2 Storage 3.3.3 Processing and analytics Architectures 3.4.1 Lambda lake 3.4.2 Kappa lake 3.4.3 Delta lake Metadata SP-DM Business understanding Data understanding	12 12 12 13 13 13 13 14 15 15

5	Mad	chine le	arning 1	17
	5.1	Tasks		17
	5.2	Catego	ories	17
	5.3	0		17
		5.3.1		17
		5.3.2	v =	18
		5.3.3		18
		5.3.4		18
		0.0.1	Zaca quantity	
6	Data	a prepre	ocessing	20
	6.1	Aggreg	gation	20
	6.2	Sampl	ing	20
	6.3	Dimen	sionality reduction	20
		6.3.1	Principal component analysis	21
		6.3.2	Feature subset selection	21
	6.4	Featur	e creation	21
	6.5			21
		6.5.1	v =	21
		6.5.2	0	21
		6.5.3	8	22
	6.6			 22
	0.0	1100110		
7	Clas	sificatio	on 2	23
	7.1	Evalua	tion	24
		7.1.1	Test set error	24
		7.1.2	Dataset splits	25
		7.1.3		26
		7.1.4	v 1	26
		7.1.5		 27
		7.1.6	-	- · 28
	7.2			-0 29
	1.2	7.2.1		29
		7.2.1	· ·	29 29
		7.2.2		23 32
		7.2.3 $7.2.4$		32
	7 9	•		32
	7.3		v	
		7.3.1		32
	- 4	7.3.2		33
	7.4	Percep		33
		7.4.1	9	34
	7.5	• •		34
		7.5.1		35
		7.5.2	1 0	36
		7.5.3		36
	7.6	Neural	networks	36
		7.6.1	Training	36
	7.7	K-near	rest neighbors	36
	7.8	Binary	to multi-class classification	37
	7.9	Ensem	ble methods	37
				37

8	Regi	ression	39
9	Clus	tering	40
	9.1	Similarity and dissimilarity	40
		9.1.1 Distance	
		9.1.2 Vector similarity	41
		9.1.3 Correlation	
	9.2	Clustering definitions	42
	9.3	Metrics	42
	9.4	K-means	44
	9.5	Hierarchical clustering	45
		9.5.1 Agglomerative clustering	46
	9.6	Density-based clustering	46
		9.6.1 DBSCAN	46
		9.6.2 DENCLUE	47
	9.7	Model-based clustering	48
10	Asso	ociation rules	49
	10.1	Frequent itemset	49
	10.2	Frequent itemset generation	50
		10.2.1 Brute force	50
		10.2.2 Apriori principle	50
	10.3	Rule generation	51
		10.3.1 Brute force	51
		10.3.2 Apriori principle	51
	10.4	Interestingness measures	52
		10.4.1 Statistical-based measures	52
	10.5	Multi-dimensional association rules	53
	10.6	Multi-level association rules	53

Acronyms

BI Business Intelligence

CDC Change Data Capture

CRISP-DM Cross Industry Standard Process for Data Mining

DFM Dimensional Fact Model

DM Data Mart

DSS Decision Support System

DWH Data Warehouse

EIS Executive Information System

ERP Enterprise Resource Planning

ETL Extraction, Transformation, Loading

MIS Management Information System

OLAP Online Analysical Processing

OLTP Online Transaction Processing

1 Introduction

1.1 Data

Data Collection of raw values.

Data

Information Organized data (e.g. relationships, context, ...).

Information

Knowledge Understanding information.

Knowledge

1.1.1 Data sources

Transaction Business event that generates or modifies data in an information system (e.g. database).

Transaction

Signal Measure produced by a sensor.

Signal

External subjects

1.1.2 Software

Online Transaction Processing (OLTP) Class of programs to support transaction-oriented Online Transaction applications and data storage. Suitable for real-time applications.

Processing

Enterprise Resource Planning (ERP) Integrated system to manage all the processes of a business. Uses a shared database for all applications. Suitable for real-time applications.

Enterprise Resource Planning

1.1.3 Insight

Decisions can be classified as:

Structured Established and well-understood situations. What is needed is known.

Structured decision

Unstructured Unplanned and unclear situations. What is needed for the decision is unknown.

Unstructured decision

Different levels of insight can be extracted by:

Management Information System (MIS) Standardized reporting system built on an existing OLTP. Used for structured decisions.

Management Information System

Decision Support System (DSS) Analytical system to provide support for unstructured decisions.

Decision Support System

Executive Information System (EIS) Formulate high-level decisions that impact the organization.

Executive Information System

Online Analysical Processing (OLAP) Grouped analysis of multidimensional data. Involves a large amount of data.

Online Analysical Processing

Business Intelligence (BI) Applications, infrastructure, tools and best practices to analyze information.

Business Intelligence

Big data Large and/or complex and/or fast-changing collection of data that traditional DBMSs are unable to process.

Big data

Structured e.g. relational tables.

Unstructured e.g. videos.

Semi-structured e.g. JSON.

Anaylitics Structured decision driven by data.

Anaylitics

Data mining

Data mining Discovery process for unstructured decisions.

Internal Patterns & Models

Data Prepared Data Prepared Data

Data Sources

External web, public db, open data, ...

Figure 1.1: Data mining process

Machine learning Learning models and algorithms that allow to extract patterns from Machine learning data.

2 Data warehouse

Business Intelligence Transform raw data into information. Deliver the right information Business Intelligence to the right people at the right time through the right channel.

Data Warehouse (DWH) Optimized repository that stores information for decision-making Data Warehouse processes. DWHs are a specific type of DSS.

Features:

- Subject-oriented: focused on enterprise-specific concepts.
- Integrates data from different sources and provides a unified view.
- Non-volatile storage with change tracking.

Data Mart (DM) Subset of the primary DWH with information relevant to a specific business area.

2.1 Online Analysical Processing (OLAP)

OLAP analyses Able to interactively navigate the information in a data warehouse. Allows to visualize different levels of aggregation.

Online Analysical Processing (OLAP)

OLAP session Navigation path created by the operations that a user applied.

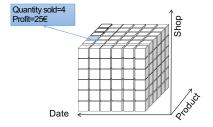
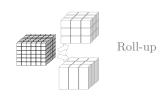


Figure 2.1: OLAP data cube

2.1.1 Operators

 $\label{eq:Roll-up} \textbf{Roll-up} \begin{tabular}{l} \textbf{Increases the level of aggregation (i.e. \ \tt{GROUP} \ BY in \ SQL)}. \ Some \\ \textbf{details are collapsed together}. \end{tabular}$

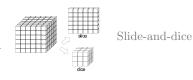


Drill-down Reduces the level of aggregation. Some details are reintroduced.

The slice operator reduces the number of dimensions (i.e. drops columns).

Slide-and-dice

The dice operator reduces the number of data being analyzed (i.e. LIMIT in SQL).



Pivot $\frac{\text{Changes the layout of the data, to analyze it from a different viewpoint.}}{\text{Changes the layout of the data, to analyze it from a different viewpoint.}}$

Drill-across Links concepts from different data sources (i.e. JOIN in SQL).

Drill-through Switches from multidimensional aggregated data to operational data (e.g. Drill-through a spreadsheet).

2.2 Extraction, Transformation, Loading (ETL)

The ETL process extracts, integrates and cleans operational data that will be loaded into a data warehouse.

Extraction, Transformation, Loading (ETL)

2.2.1 Extraction

Extracted operational data can be:

Structured with a predefined data model (e.g. relational DB, CSV)

Strucured data

Untructured without a predefined data model (e.g. social media content)

Unstrucured data

Extraction can be of two types:

Static The entirety of the operational data are extracted to populate the data warehouse for the first time.

Static extraction

Incremental Only changes applied since the last extraction are considered. Can be based on a timestamp or a trigger.

Incremental extraction

2.2.2 Cleaning

Operational data may contain:

Duplicate data

Missing data

Improper use of fields (e.g. saving the phone number in the notes field)

Wrong values (e.g. 30th of February)

Inconsistencies (e.g. use of different abbreviations)

Typos

Methods to clean and increase the quality of the data are:

Dictionary-based techniques Lookup tables to substitute abbreviations, synonyms or typos. Applicable if the domain is known and limited.

Dictionary-based cleaning

Approximate merging Methods to merge data that do not have a common key.

Approximate merging

Approximate join Use non-key attributes to join two tables (e.g. using the name and surname instead of a unique identifier).

Similarity approach Use similarity functions (e.g. edit distance) to merge multiple instances of the same information (e.g. typo in customer surname).

Ad-hoc algorithms

Ad-hoc algorithms

2.2.3 Transformation

Data are transformed to respect the format of the data warehouse:

Conversion Modifications of types and formats (e.g. date format)

Conversion

Enrichment Creating new information by using existing attributes (e.g. compute profit from receipts and expenses)

Enrichment

Separation and concatenation Denormalization of the data: introduces redundancies (i.e. breaks normal form¹) to speed up operations.

Separation and concatenation

2.2.4 Loading

Adding data into a data warehouse:

Refresh The entire DWH is rewritten.

Refresh loading

Update Only the changes are added to the DWH. Old data are not modified.

Update loading

2.3 Data warehouse architectures

The architecture of a data warehouse should meet the following requirements:

Separation Separate the analytical and transactional workflows.

Scalability Hardware and software should be easily upgradable.

Extensibility Capability to host new applications and technologies without the need to redesign the system.

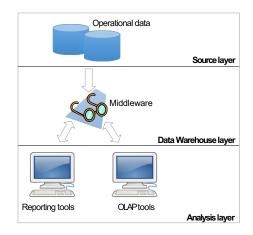
Security Access control.

Administrability Easily manageable.

¹https://en.wikipedia.org/wiki/Database_normalization

2.3.1 Single-layer architecture

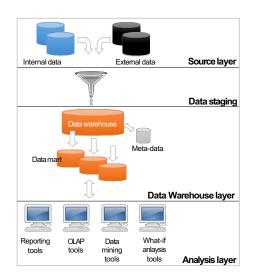
- Minimizes the amount of data stored (i.e. no redundances).
- The source layer is the only physical layer (i.e. no separation).
- A middleware provides the DWH features.



Single-layer architecture

2.3.2 Two-layer architecture

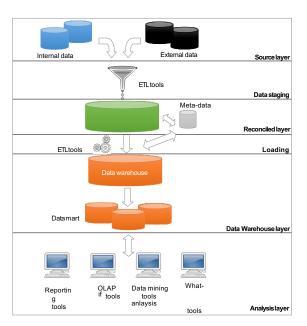
- Source data (source layer) are physically separated from the DWH (data warehouse layer).
- A staging layer applies ETL procedures before populating the DWH.
- The DWH is a centralized repository from which data marts can be created. Metadata repositories store information on sources, staging and data marts schematics.



Two-layer architecture

2.3.3 Three-layer architecture

• A reconciled layer enhances the cleaned data coming from the staging step by adding enterprise-level details (i.e. adds more redundancy before populating the DWH).



Three-layer architecture

2.4 Conceptual modeling

Dimensional Fact Model (DFM) Conceptual model to support the design of data marts. The main concepts are:

Dimensional Fact Model (DFM)

Fact Concept relevant to decision-making processes (e.g. sales).

Measure Numerical property to describe a fact (e.g. profit).

Dimension Property of a fact with a finite domain (e.g. date).

Dimensional attribute Property of a dimension (e.g. month).

Hierarchy A tree where the root is a dimension and nodes are dimensional attributes (e.g. date \rightarrow month).

Primary event Occurrence of a fact. It is described by a tuple with a value for each dimension and each measure.

Secondary event Aggregation of primary events. Measures of primary events are aggregated if they have the same (preselected) dimensional attributes.

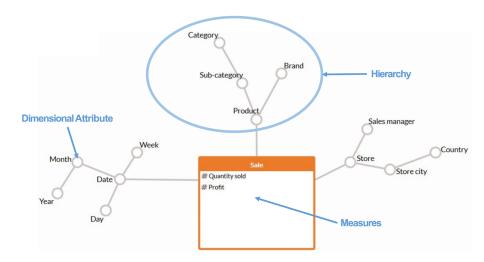


Figure 2.2: Example of DFM

Primary events								
Date	Store	Product		Qty so	old		Profit	
01/03/15	Central store	e Milk			20		6	0
01/03/15	Central store	e Coke			25		5	0
02/03/15	Central store	e Bread			40		7	0
10/03/15 Central store		e Wine		15			15	0
Second	Secondary event SUM SUM							
Month Store Category Qty					sold		Profi	it
March 2015	Central store	Food and Beverages			10	0		330

Figure 2.3: Example of primary and secondary events

2.4.1 Aggregation operators

Measures can be classified as:

Flow measures Evaluated cumulatively with respect to a time interval (e.g. quantity Flow measures sold)

Level measures Evaluated at a particular time (e.g. number of products in inventory). Level measures

Unit measures Evaluated at a particular time but expressed in relative terms (e.g. unit price).

Aggregation operators can be classified as:

Distributive Able to calculate aggregates from partial aggregates (e.g. SUM, MIN, MAX).

Algebraic Requires a finite number of support measures to compute the result (e.g. Algebraic operators

Holistic Requires an infinite number of support measures to compute the result (e.g. RANK).

Holistic operators

Distributive

Additivity A measure is additive along a dimension if an aggregation operator can be applied.

Additive measure

	Temporal hierarchies	Non-temporal hierarchies
Flow measures	SUM, AVG, MIN, MAX	SUM, AVG, MIN, MAX
Level measures	AVG, MIN, MAX	SUM, AVG, MIN, MAX
Unit measures	AVG, MIN, MAX	AVG, MIN, MAX

Table 2.1: Allowed operators for each measure type

2.5 Logical design

Defining the data structures (e.g. tables and relationships) according to a conceptual Logical design model. There are two main strategies:

Star schema A fact table that contains all the measures is linked to dimensional tables. Star schema

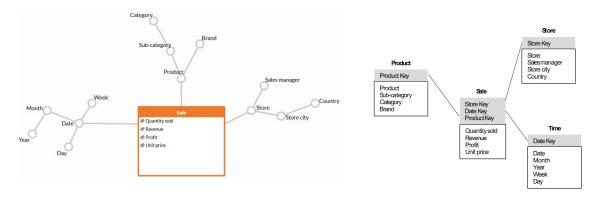


Figure 2.4: Example of star schema

Snowflake schema A star schema variant with partially normalized dimensional tables. Snowflake schema

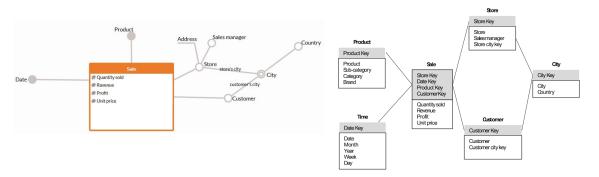


Figure 2.5: Example of snowflake schema

3 Data lake

Dark data Acquired and stored data that are never used for decision-making processes.

Dark data

Data lake Repository to store raw (unstructured) data. It has the following features:

Data lake

- Does not enforce a schema on write.
- Allows flexible access and applies schemas on read.
- Single source of truth.
- Low cost and scalable.

Storage Stored data can be classified as:

Hot A low volume of highly requested data that requires low latency. More expensive HW/SW.

Cold A large amount of data that does not have latency requirements. Less Cold storage expensive.

Data warehouse	Data hub	Data lake
←		
Hot		Cold

Figure 3.1: Data storage technologies

3.1 Traditional vs insight-driven data systems

Traditional (data warehouse)		Insight-driven (data lake)
Sources	Structured data	Structured, semi-structured and un-
		structured data
Storage	Limited ingestion and storage capa-	Virtually unlimited ingestion and
	bility	storage capability
Schema Schema designed upfront Schema n		Schema not fixed
Transformations	ETL upfront	Transformations on query
Analytics	SQL, BI tools, full-text search	Traditional methods, self-service BI,
		big data, machine learning,
Price	High storage cost	Low storage cost
Performance	Fast queries	Scalability/speed/cost tradeoffs
Quality	High data quality	Depends on the use case

3.2 Data architecture evolution

Traditional data warehouse (i.e. in-house data warehouse)

Traditional data warehouse

- Structured data with predefined schemas.
- High setup and maintenance cost. Not scalable.

- Relational high-quality data.
- Slow data ingestion.

Modern cloud data warehouse

- Structured and semi-structured data.
- Low setup and maintenance cost. Scalable and easier disaster recovery.
- Relational high-quality data and mixed data.
- Fast data ingestion if supported.

On-premise big data (i.e. in-house data lake)

- Any type of data with schemas on read.
- High setup and maintenance cost.
- Fast data ingestion.

Cloud data lake

ata lake Cloud data lake

- Any type of data with schemas on read.
- Low setup and maintenance cost. Scalable and easier disaster recovery.
- Fast data ingestion.

3.3 Components

3.3.1 Data ingestion

Workload migration Inserting all the data from an existing source.

Data ingestion

Modern cloud data

On-premise big data

warehouse

Incremental ingestion Inserting changes since the last ingestion.

Streaming ingestion Continuously inserting data.

Change Data Capture (CDC) Mechanism to detect changes and insert the new data into the data lake (possibly in real-time).

Change Data
Capture (CDC)

3.3.2 Storage

Raw Immutable data useful for disaster recovery.

Raw storage

Optimized Optimized raw data for faster query.

 ${\bf Optimized\ storage}$

Analytics Ready to use data.

Analytics storage

Columnar storage

- Homogenous data are stored contiguously.
- Speeds up methods that process entire columns (i.e. all the values of a feature).
- Insertion becomes slower.

Data catalog Methods to add descriptive metadata to a data lake. This is useful to prevent an unorganized data lake (data swamp).

3.3.3 Processing and analytics

Interactive analytics Interactive queries to large volumes of data. The results are stored back in the data lake.

Processing and analytics

Big data analytics Data aggregations and transformations.

Real-time analytics Streaming analysis.

3.4 Architectures

3.4.1 Lambda lake

Batch layer Receives and stores the data. Prepares the batch views for the serving layer. Lambda lake Serving layer Indexes batch views for faster queries.

Speed layer Receives the data and prepares real-time views. The views are also stored in the serving layer.

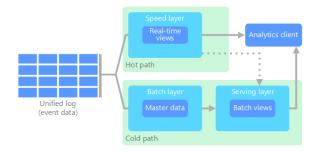


Figure 3.2: Lambda lake architecture

3.4.2 Kappa lake

The data are stored in a long-term store. Computations only happen in the speed layer Kappa lake (avoids lambda lake redundancy between batch layer and speed layer).

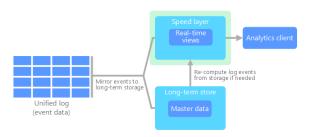


Figure 3.3: Kappa lake architecture

3.4.3 Delta lake

Framework that adds features on top of an existing data lake.

Delta lake

• ACID transactions

- Scalable metadata handling
- Data versioning
- Unified batch and streaming
- Schema enforcement

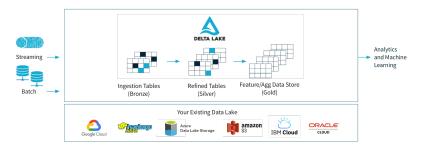


Figure 3.4: Delta lake architecture

3.5 Metadata

Metadata is used to organize a data lake. Useful metadata are:

Metadata

Source Origin of the data.

Schema Structure of the data.

Format File format or encoding.

Quality metrics (e.g. percentage of missing values).

Lifecycle Retention policies and archiving rules.

Ownership

Lineage History of applied transformations or dependencies.

Access control

Classification Sensitivity level of the data.

Usage information Record of who accessed the data and how it is used.

4 CRISP-DM

Cross Industry Standard Process for Data Mining Standardized process for data mining.

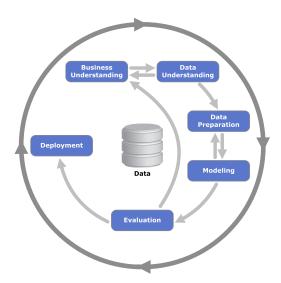


Figure 4.1: CRISP-DM workflow

4.1 Business understanding

- Determine the objective and the success criteria.
- Feasibility study.
- Produce a plan.

4.2 Data understanding

- Determine the available (raw) data.
- Determine the cost of the data.
- Collect, describe, explore and verify data.

4.3 Data preparation

- Data cleaning.
- Data transformations.

Business understanding

Data understanding

Data preparation

4.4 Modeling

• Select modeling technique.

Modeling

• Build/train the model.

4.5 Evaluation

• Evaluate results.

• Review process.

4.6 Deployment

• Plan deployment.

• Plan monitoring and maintenance.

• Final report and review.

5 Machine learning

Machine learning Application of methods and algorithms to extract patterns from data. Machine learning

5.1 Tasks

Classification Estimation of a finite number of classes.

Regression Estimation of a numeric value.

Similarity matching Identify similar individuals.

Clustering Grouping individuals based on their similarities.

Co-occurrence grouping Identify associations between entities based on the transactions in which they appear together.

Profiling Behavior description.

Link analysis Analysis of connections (e.g. in a graph).

Data reduction Reduce the dimensionality of data with minimal information loss.

Casual modeling Understand the connections between events and actions.

5.2 Categories

Supervised learning Problem where the target(s) is defined.

Supervised learning

Unsupervised learning Problem where no specific target is known.

Unsupervised learning Reinforcement

Reinforcement learning Learn a policy to generate a sequence of actions.

learning

5.3 Data

Dataset Set of N individuals, each described by D features.

Dataset

5.3.1 Data types

Categorical Values with a discrete domain.

Nominal The values are a set of non-ordered labels.

Categorical nominal

data

Operators. $=, \neq$

Example. Name, surname, zip code.

Ordinal The values are a set of totally ordered labels.

Categorical ordinal

data

Operators. $=, \neq, <, >, \leq, \geq$

Example. Non-numerical quality evaluations (excellent, good, fair, poor, bad).

Numerical Values with a continuous domain.

Interval Numerical values without an univocal definition of 0 (i.e. 0 is not used as reference). It is not reasonable to compare the magnitude of this type of data.

Numerical interval data

Operators. $=, \neq, <, >, \leq, \geq, +, -$

Example. Celsius and Fahrenheit temperature scales, CGPA, time,

For instance, there is a 6.25% increase from 16° C to 17° C, but converted in Fahrenheit, the increase is of 2.96% (from 60.8° F to 62.6° F).

Ratio Values with an absolute 0 point.

Numerical ratio data

Operators. $=, \neq, <, >, \leq, \geq, +, -$

Example. Kelvin temperature scale, age, income, length.

For instance, there is a 10% increase from 100\$ to 110\$. Converted in euro $(1 \in = 1.06\$)$, the increase is still of 10% (from $94.34 \in to 103.77 \in t$

5.3.2 Transformations

Data type		Transformation
Categorical	Nominal	One-to-one transformations
Categorical	Ordinal	Order preserving transformations (i.e.
Ordinai		monotonic functions)
Numerical	Interval	Linear transformations
Numericai	Ratio	Any mathematical function, standardization,
Itatio		variation in percentage

5.3.3 Dataset format

Relational table The attributes of each record are the same.

Relational table

Data matrix Matrix with N rows (entries) and D columns (attributes).

Data matrix

Sparse matrix Data matrix with lots of zeros.

Sparse matrix

Example (Bag-of-words). Each row represents a document, each column represents a term. The i, j-th cell contains the frequency of the j-th term in the i-th document.

Transactional data Each record contains a set of objects (not necessarily a relational table).

Transactional data

Graph data Set of nodes and edges.

Graph data

Ordered data e.g. temporal data.

Ordered data

5.3.4 Data quality

Noise Alteration of the original values.

Noise

Outliers Data that considerably differ from the majority of the dataset. May be caused by noise or rare events.

Outliers

Box plots can be used to visually detect outliers.

Missing values Data that have not been collected. Sometimes they are not easily recognizable (e.g. when special values are used to mark missing data instead of null).

Can be handled in different ways:

- Ignore the records with missing values.
- Estimate or default missing values.
- \bullet Ignore the fact that some values are missing (not always applicable).
- Insert all the possible values and weigh them by their probability.

Duplicated data Data that may be merged.

Duplicated data

6 Data preprocessing

6.1 Aggregation

Combining multiple attributes into a single one. Useful for:

Aggregation

Data reduction Reduce the number of attributes.

Change of scale View the data in a more general level of detail (e.g. from cities and regions to countries).

Data stability Aggregated data tend to have less variability.

6.2 Sampling

Sampling can be used when the full dataset is too expensive to obtain or too expensive to process. Obviously, a sample has to be representative.

Sampling

The types of sampling techniques are:

Simple random Extraction of a single element following a given probability distribution

Simple random

With replacement Multiple extractions with repetitions following a given probability distribution (i.e. multiple simple random extractions).

With replacement

If the population is small, the sample may underestimate the actual population.

Without replacement Multiple extractions without repetitions following a given probability distribution.

Without replacement

Stratified Split the data and sample from each partition. Useful when the partitions are homogenous.

Stratified

Sample size The sampling size represents a tradeoff between data reduction and precision. In a labeled dataset, it is important to consider the probability of sampling data from all the possible classes.

6.3 Dimensionality reduction

Curse of dimensionality Data with a high number of dimensions result in a sparse feature space where distance metrics are ineffective.

Curse of dimensionality

Dimensionality reduction Useful to:

- Avoid the curse of dimensionality.
- Reduce noise.
- Reduce the time and space complexity of mining and learning algorithms.
- Visualize multi-dimensional data.

Dimensionality reduction

6.3.1 Principal component analysis

Projection of the data into a lower-dimensional space that maximizes the variance of the data. It can be proven that this problem can be solved by finding the eigenvectors of the covariance matrix of the data.

PCA

6.3.2 Feature subset selection

Local technique to reduce dimensionality by:

Feature subset selection

- Removing redundant attributes.
- Removing irrelevant attributes.

This can be achieved by:

Brute force Try all the possible subsets of the dataset.

Embedded approach Feature selection is naturally done by the learning algorithm (e.g. decision trees).

Filter approach Features are filtered using domain-specific knowledge.

Wrapper approaches A mining algorithm is used to select the best features.

6.4 Feature creation

Useful to help a learning algorithm capture data characteristics. Possible approaches are:

Feature creation

Feature extraction Features extracted from the existing ones (e.g. from a picture of a face, the eye distance can be a new feature).

Mapping Projecting the data into a new feature space.

New features Add new, possibly redundant, features.

6.5 Data type conversion

6.5.1 One-hot encoding

A discrete feature $E \in \{e_1, \ldots, e_n\}$ with n unique values is replaced with n new binary features H_{e_1}, \ldots, H_{e_n} each corresponding to a value of E. For each entry, if its feature E has value e_i , then $H_{e_i} = \text{true}$ and the rests are false.

One-hot encoding

6.5.2 Ordinal encoding

A feature whose values have an ordering can be converted into a consecutive sequence of Ordinal encoding integers (e.g. ["good", "neutral", "bad"] \mapsto [1, 0, -1]).

6.5.3 Discretization

Convert a continuous feature to a discrete one.

Discretization

Binarization Given a continuous feature and a threshold, it can be replaced with a new binary feature that is **true** if the value is above the threshold and **false** otherwise.

Binarization

Thresholding Same as binarization but using multiple thresholds.

Thresholding

K-bins A continuous feature is discretized using k bins each representing an integer from 0 to k-1.

K-bins

6.6 Attribute transformation

Useful for normalizing features with different scales and outliers.

Mapping Map the domain of a feature into a new set of values (i.e. apply a function).

Mapping

Standardization Transform a feature with Gaussian distribution into a standard distribution.

Standardization

 $x = \frac{x - \mu}{\sigma}$

Rescaling Map a feature into a fixed range (e.g. scale to [0,1] or [-1,1]).

Rescaling

Affine transformation Apply a linear transformation on a feature before rescaling it. This method is more robust to outliers.

Affine transformation

Normalization Normalize each data row to unit norm.

Normalization

7 Classification

(Supervised) classification Given a finite set of classes C and a dataset X of N individuals, each associated to a class $y(\mathbf{x}) \in C$, we want to learn a model \mathcal{M} able to guess the value of $y(\bar{\mathbf{x}})$ for unseen individuals.

Classification

Classification can be:

Crisp Each individual has one and only one label.

Crisp classification

Probabilistic Each individual is assigned to a label with a certain probability.

Probabilistic classification Classification model

Classification model A classification model (classifier) makes a prediction by taking as input a data element \mathbf{x} and a decision function y_{θ} parametrized on θ :

$$\mathcal{M}(\mathbf{x}, \mathbf{\theta}) = y_{\mathbf{\theta}}(\mathbf{x})$$

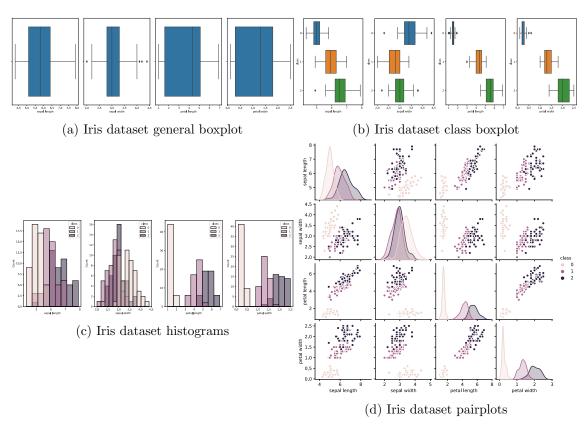
Vapnik-Chervonenkis dimension A dataset with N elements defines 2^N learning problems. A model \mathcal{M} has Vapnik-Chervonenkis (VC) dimension N if it is able to solve all the possible learning problems with N elements.

Vapnik-Chervonenkis dimension

Example. A straight line has VC dimension 3.

Data exploration

Data exploration



Hyperparameters Parameters of the model that have to be manually chosen.

7.1 Evaluation

Dataset split A supervised dataset can be randomly split into:

Train set Used to learn the model. Usually the largest split. Can be seen as an upper bound of the model performance.

Test set Used to evaluate the trained model. Can be seen as a lower bound of the model performance.

Validation set Used to evaluate the model during training and/or for tuning parameters. Validation set

It is assumed that the splits have similar characteristics.

Overfitting Given a dataset X, a model \mathcal{M} is overfitting if there exists another model \mathcal{M}' such that:

$$\operatorname{error}_{\operatorname{train}}(\mathcal{M}) < \operatorname{error}_{\operatorname{train}}(\mathcal{M}')$$

 $\operatorname{error}_{\boldsymbol{X}}(\mathcal{M}) > \operatorname{error}_{\boldsymbol{X}}(\mathcal{M}')$

Possible causes of overfitting are:

- Noisy data.
- Lack of representative instances.

7.1.1 Test set error

Disclaimer: I'm very unsure about this part

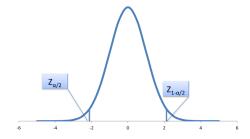
The error on the test set can be seen as a lower bound error of the model. If the test set error ratio is x, we can expect an error of $(x \pm \text{confidence interval})$.

Predicting the elements of the test set can be seen as a binomial process (i.e. a series of N Bernoulli processes). We can therefore compute the empirical frequency of success as f = (correct predictions/N). We want to estimate the probability of success p.

We assume that the deviation between the empirical frequency and the true frequency is due to a normal noise around the true probability (i.e. the true probability p is the mean). Fixed a confidence level α (i.e. the probability of a wrong estimate), we want that:

$$\mathcal{P}\left(z_{\frac{\alpha}{2}} \le \frac{f - p}{\sqrt{\frac{1}{N}p(1 - p)}} \le z_{(1 - \frac{\alpha}{2})}\right) = 1 - \alpha$$

In other words, we want the middle term to have a high probability to be between the $\frac{\alpha}{2}$ and $(1-\frac{\alpha}{2})$ quantiles of the gaussian.

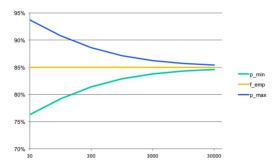


We can estimate p using the Wilson score interval¹:

$$p = \frac{1}{1 + \frac{1}{N}z^2} \left(f + \frac{1}{2N}z^2 \pm z\sqrt{\frac{1}{N}f(1 - f) + \frac{z^2}{4N^2}} \right)$$

where z depends on the value of α . For a pessimistic estimate, \pm becomes a +. Vice versa, for an optimistic estimate, \pm becomes a -.

As N is at the denominator, this means that for large values of N, the uncertainty becomes smaller.



7.1.2 Dataset splits

Holdout The dataset is split into train, test and, if needed, validation.

Holdout

Cross-validation The training data is partitioned into k chunks. For k iterations, one of the chunks is used to test and the others to train a new model. The overall error is obtained as the average of the errors of the k iterations.

Cross-validation

In the end, the final model is still trained on the entire training data, while cross-validation results are used as an evaluation and comparison metric. Note that cross-validation is done on the training set, so a final test set can still be used to evaluate the resulting model.

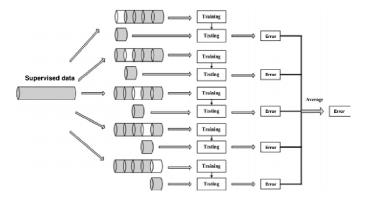


Figure 7.2: Cross-validation example

Leave-one-out Extreme case of cross-validation with k = N, the size of the training set. In this case, the whole dataset but one element is used for training and the remaining entry for testing.

Leave-one-out

Bootstrap Statistical sampling of the dataset with replacement (i.e. an entry can be selected multiple times). The selected entries form the training set while the elements that have never been selected are used for testing.

 ${\bf Bootstrap}$

¹https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval

7.1.3 Binary classification performance measures

In binary classification, the two classes can be distinguished as the positive and negative labels. The prediction of a classifier can be a:

True positive (TP) · False positive (FP) · True negative (TN) · False negative (FN)

		Predicted		
		Pos	Neg	
ne	Pos	TP	FN	
Ţ	Neg	FP	TN	

Given a test set of N element, possible metrics are:

Accuracy Number of correct predictions.

Accuracy

$$\mathrm{accuracy} = \frac{TP + TN}{N}$$

Error rate Number of incorrect predictions.

Error rate

error rate =
$$1 - accuracy$$

Precision Number of true positives among what the model classified as positive (i.e. Precision how many samples the model classified as positive are real positives).

$$\mathrm{precision} = \frac{TP}{TP + FP}$$

Recall/Sensitivity Number of true positives among the real positives (i.e. how many real positives the model predicted).

$$\text{recall} = \frac{TP}{TP + FN}$$

Specificity Number of true negatives among the real negatives (i.e. recall for negative labels).

$$\text{specificity} = \frac{TN}{TN + FP}$$

F1 score Harmonic mean of precision and recall (i.e. measure of balance between precision and recall).

$$F1 = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

7.1.4 Multi-class classification performance measures

Confusion matrix Matrix to correlate the predictions of n classes:

Confusion matrix

		Predicted				
		a	b	c	Total	
	a	TP_a	FP_{a-b}	FP_{a-c}	T_a	
ne	b	FP_{b-a}	TP_b	FP_{b-c}	T_b	
Τ̈́	c	FP_{c-a}	FP_{c-b}	TP_c	T_c	
	Total	P_a	P_b	P_c	N	

where:

- a, b and c are the classes.
- T_x is the true number of labels of class x in the dataset.
- P_x is the predicted number of labels of class x in the dataset.
- TP_x is the number of times a class x was correctly predicted (true predictions).
- FP_{i-j} is the number of times a class i was predicted as j (false predictions).

Accuracy Accuracy is extended from the binary case as:

Accuracy

$$accuracy = \frac{\sum_{i} TP_{i}}{N}$$

Precision Precision is defined w.r.t. a single class:

Precision

$$precision_i = \frac{TP_i}{P_i}$$

Recall Recall is defined w.r.t. a single class:

Recall

$$recall_i = \frac{TP_i}{T_i}$$

If a single value of precision or recall is needed, the mean can be used by computing a macro (unweighted) average or a class-weighted average.

 κ -statistic Evaluates the concordance between two classifiers (in our case, the predictor and the ground truth). It is based on two probabilities:

 κ -statistic

Probability of concordance
$$\mathcal{P}\left(c\right) = \frac{\sum_{i}^{\mathrm{classes}} TP_{i}}{N}$$

Probability of random concordance $\mathcal{P}\left(r\right)=\frac{\sum_{i}^{\mathrm{classes}}T_{i}P_{i}}{N^{2}}$

 κ -statistic is given by:

$$\kappa = \frac{\mathcal{P}(c) - \mathcal{P}(r)}{1 - \mathcal{P}(r)} \in [-1, 1]$$

When $\kappa=1$, there is perfect agreement $(\sum_{i}^{\mathtt{classes}} TP_i=1)$, when $\kappa=-1$, there is total disagreement $(\sum_{i}^{\mathtt{classes}} TP_i=0)$ and when $\kappa=0$, there is random agreement.

7.1.5 Probabilistic classifier performance measures

Lift chart Used in binary classification. Given the resulting probabilities of the positive class of a classifier, sort them in decreasing order and plot a 2d-chart with increasing sample size on the x-axis and the number of positive samples on the y-axis.

Lift chart

Then, plot a straight line to represent a baseline classifier that makes random choices. As the probabilities are sorted in decreasing order, it is expected a high concentration of positive labels on the right side. When the area between the two curves is large and the curve is above the random classifier, the model can be considered a good classifier.

ROC curve The ROC curve can be seen as a way to represent multiple confusion matrices of a classifier that uses different thresholds. The x-axis of a ROC curve represents the false positive rate while the y-axis represents the true positive rate.

ROC curve

A straight line is used to represent a random classifier. A threshold can be considered good if it is high on the y-axis and low on the x-axis.

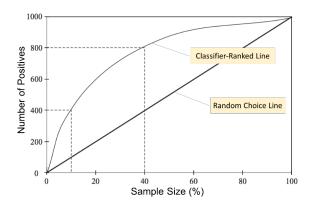


Figure 7.3: Example of lift chart

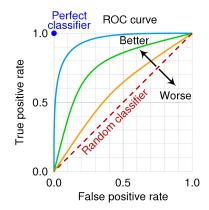


Figure 7.4: Example of ROC curves

7.1.6 Data imbalance

A classifier may not perform well when predicting a minority class of the training data. Possible solutions are:

Undersampling Randomly reduce the number of examples of the majority classes.

Undersampling

Oversampling Increase the examples of the minority classes.

Oversampling

Synthetic minority oversampling technique (SMOTE)

SMOTE

- 1. Randomly select an example x belonging to the minority class.
- 2. Select a random neighbor z_i among its k-nearest neighbors z_1, \ldots, z_k .
- 3. Synthesize a new example by selecting a random point of the feature space between x and z_i .

Cost sensitive learning Assign a cost to the errors. Higher weights are assigned to minority classes. This can be done by:

Cost sensitive learning

- Altering the proportions of the dataset by duplicating samples to reduce its misclassification.
- Weighting the classes (possible in some algorithms).

7.2 Decision trees

7.2.1 Information theory

Shannon theorem Let $X = \{\mathbf{v}_1, \dots, \mathbf{v}_V\}$ be a data source where each of the possible values has probability $p_i = \mathcal{P}(\mathbf{v}_i)$. The best encoding allows to transmit X with an average number of bits given by the **entropy** of X:

Shannon theorem

Entropy

$$H(\boldsymbol{X}) = -\sum_{j} p_{j} \log_{2}(p_{j})$$

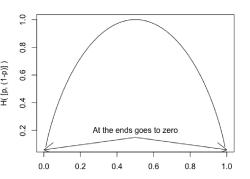
 $H(\boldsymbol{X})$ can be seen as a weighted sum of the surprise factor $-\log_2(p_j)$. If $p_j \sim 1$, then the surprise of observing \mathbf{v}_j is low, vice versa, if $p_j \sim 0$, the surprise of observing \mathbf{v}_j is high.

Therefore, when H(X) is high, X is close to a uniform distribution. When H(X) is low, X is close to a constant.

Example (Binary source).

The two values of a binary source \boldsymbol{X} have respectively probability p and (1-p). When $p \sim 0$ or $p \sim 1$, $H(\boldsymbol{X}) \sim 0$.

When $p \sim 0.5$, $H(\boldsymbol{X}) \sim \log_2(2) = 1$



Entropy threshold split Given a dataset D, a real-valued attribute $d \in D$, a threshold t in the domain of d and the class attribute c of D. The entropy of the class c of the dataset D split with threshold t on d is a weighted sum:

Entropy threshold split

$$H(c | d : t) = \mathcal{P}(d < t)H(c | d < t) + \mathcal{P}(d \ge t)H(c | d \ge t)$$

Information gain Information gain measures the reduction in entropy after applying a split. It is computed as:

Information gain

$$IG(c | d : t) = H(c) - H(c | d : t)$$

When H(c | d : t) is low, IG(c | d : t) is high as splitting with threshold t results in purer groups. Vice versa, when H(c | d : t) is high, IG(c | d : t) is low as splitting with threshold t is not very useful.

The information gain of a class c split on a feature d is given by:

$$IG(c \mid d) = \max_{t} IG(c \mid d : t)$$

7.2.2 Tree construction

Decision tree (C4.5) Tree-shaped classifier where leaves are class predictions and inner nodes represent conditions that guide to a leaf. This type of classifier is non-linear (i.e. does not represent a linear separation).

Decision tree

Each node of the tree contains:

- The applied splitting criteria (i.e. feature and threshold). Leaves do not have this value.
- The purity (e.g. entropy) of the current split.
- Dataset coverage of the current split.
- Classes distribution.

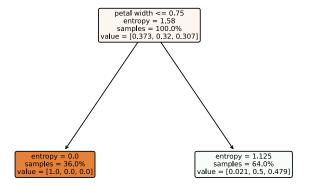


Figure 7.5: Example of decision tree

Note: the weighted sum of the entropies of the children is always smaller than the entropy of the parent.

Possible stopping conditions are:

- When most of the leaves are pure (i.e. nothing useful to split).
- When some leaves are impure but none of the possible splits have positive *IG*. Impure leaves are labeled with the majority class.

Purity Value to maximize when splitting a node of a decision tree.

Purity

Nodes with uniformly distributed classes have a low purity. Nodes with a single class have the highest purity.

Possible impurity measures are:

Entropy/Information gain See Section 7.2.1.

Gini index Let X be a dataset with classes C. The Gini index measures how often an element of X would be misclassified if the labels were randomly assigned based on the frequencies of the classes in X.

Gini index

Given a class $i \in C$, p_i is the probability (i.e. frequency) of classifying an element with i and $(1 - p_i)$ is the probability of classifying it with a different label. The Gini index is given by:

$$GINI(X) = \sum_{i}^{C} p_{i}(1 - p_{i}) = \sum_{i}^{C} p_{i} - \sum_{i}^{C} p_{i}^{2}$$
$$= 1 - \sum_{i}^{C} p_{i}^{2}$$

When X is uniformly distributed, $GINI(X) \sim (1 - \frac{1}{|C|})$. When X is constant, $GINI(X) \sim 0$.

Given a node x split in n children x_1, \ldots, x_n , the Gini gain of the split is given

$$GINI_{gain} = GINI(x) - \sum_{i=1}^{n} \frac{|x_i|}{|x|} GINI(x_i)$$

Misclassification error Skipped.

Misclassification error

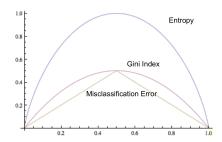


Figure 7.6: Comparison of impurity measures

Compared to Gini index, entropy is more robust to noise.

Misclassification error has a bias toward the major class.

Algorithm 1 Decision tree construction using information gain as impurity measure

```
def buildTree(split):
    node = Node()
    if len(split.classes) == 1: # Pure split
        node.label = split.classes[0]
        node.isLeaf = True
    else:
        ig, attribute, threshold = getMaxInformationGain(split)
        if ig < 0:
            node.label = split.majorityClass()
            node.isLeaf = True
            node.left = buildTree(split[attribute < threshold])</pre>
            node.right = buildTree(split[attribute >= threshold])
    return node
```

Pruning Remove branches to reduce overfitting. Different pruning techniques can be employed:

Maximum depth Maximum depth allowed for the tree.

Minimum samples for split Minimum number of samples a node is required to have to apply a split.

Minimum samples for a leaf Minimum number of samples a node is required to have to become a leaf.

Minimum impurity decrease Minimum decrease in impurity for a split to be made.

Statistical pruning Prune the children of a node if the weighted sum of the maximum errors of the children is greater than the maximum error of the node if it was a leaf.

7.2.3 Complexity

Given a dataset X of N instances and D attributes, each level of the tree requires to evaluate the whole dataset and each node requires to process all the attributes. Assuming an average height of $O(\log N)$, the overall complexity for induction (parameters search) is $O(DN \log N)$.

Moreover, the other operations of a binary tree have complexity:

- Threshold search and binary split: $O(N \log N)$ (scan the dataset for the threshold).
- Pruning: $O(N \log N)$ (requires to scan the dataset).

For inference, to classify a new instance it is sufficient to traverse the tree from the root to a leaf. This has complexity O(h), with h the height of the tree.

7.2.4 Characteristics

- Decision trees are non-parametric in the sense that they do not require any assumption on the distribution of the data.
- Finding the best tree is an NP-complete problem.
- Decision trees are robust to noise if appropriate overfitting methods are applied.
- Decision trees are robust to redundant attributes (correlated attributes are very unlikely to be chosen for multiple splits).
- In practice, the impurity measure has a low impact on the final result, while the pruning strategy is more relevant.

7.3 Naive Bayes

Bayes' theorem Given a class c and the evidence e, we have that:

$$\mathcal{P}(c \mid \mathbf{e}) = \frac{\mathcal{P}(\mathbf{e} \mid c)\mathcal{P}(c)}{\mathcal{P}(\mathbf{e})}$$

Naive Bayes classifier Classifier that uses the Bayes' theorem assuming that the attributes are independent given the class. Given a class c and the evidence $\mathbf{e} = \langle e_1, e_2, \dots, e_n \rangle$, the probability that the observation \mathbf{e} is of class c is given by:

Naive Bayes classifier

$$\mathcal{P}(c \mid \mathbf{e}) = \frac{\prod_{i=1}^{n} \mathcal{P}(e_i \mid c) \cdot \mathcal{P}(c)}{\mathcal{P}(\mathbf{e})}$$

As the denominator is the same for all classes, it can be omitted.

7.3.1 Training and inference

Training Given the classes C and the features E, to train the classifier the following priors read to be estimated:

- $\forall c \in C : \mathcal{P}(c)$
- $\forall e_{ij} \in E, \forall c \in C : \mathcal{P}(e_{ij} \mid c)$, where e_{ij} is the j-th value of the domain of the i-th feature E_i .

Inference Given a new observation $\mathbf{x}_{\text{new}} = \langle x_1, x_2, \dots, x_n \rangle$, its class is determined by Inference computing the likelihood:

$$c_{\text{new}} = \arg \max_{c \in C} \mathcal{P}(c) \prod_{i=1}^{n} \mathcal{P}(x_i \mid c)$$

7.3.2 Problems

Smooting If the value e_{ij} of the domain of a feature E_i never appears in the dataset, its probability $\mathcal{P}(e_{ij} \mid c)$ will be 0 for all classes. This nullifies all the probabilities that use this feature when computing the chain of products during inference. Smoothing methods can be used to avoid this problem.

Laplace smoothing Given:

Laplace smoothing

 α The smoothing factor.

 $af_{e_{ij},c}$ The absolute frequency of the value e_{ij} of the feature E_i over the class c.

 $|\mathbb{D}_{E_i}|$ The number of distinct values in the domain of E_i .

 af_c The absolute frequency of the class c.

The smoothed frequency is computed as:

$$\mathcal{P}\left(e_{ij} \mid c\right) = \frac{\operatorname{af}_{e_{ij},c} + \alpha}{\operatorname{af}_{c} + \alpha |\mathbb{D}_{E_{i}}|}$$

A common value of α is 1. When $\alpha = 0$, there is no smoothing. For higher values of α , the smoothed feature gains more importance when computing the priors.

Missing values Naive Bayes is robust to missing values.

Missing values

During training, the record is ignored in the frequency count of the missing feature. During inference, the missing feature can be simply excluded in the computation of the likelihood as this equally affects all classes.

Numeric values For continuous numeric values, the frequency count method cannot be used. Therefore, an additional assumption is made: numeric values follow a Gaussian distribution.

Gaussian assumption

During training, the mean $\mu_{i,c}$ and variance $\sigma_{i,c}$ for a numeric feature E_i is computed with respect to a class c. Its probability is then obtained as:

$$\mathcal{P}\left(E_i = x \mid c\right) = \mathcal{N}(\mu_{i,c}, \sigma_{i,c})(x)$$

7.4 Perceptron

Perceptron A single artificial neuron that takes n inputs x_1, \ldots, x_n and a bias b, and computes a linear combination of them with weights w_1, \ldots, w_n, w_b .

Perceptron

The learnt weights w_b, w_1, \dots, w_n define a hyperplane for binary classification such that:

$$w_1x_1 + \ldots + w_nx_n + w_bb = \begin{cases} ext{positive} & ext{if} > 0 \\ ext{negative} & ext{if} < 0 \end{cases}$$

It can be shown that there are either none or infinite hyperplanes with this property.

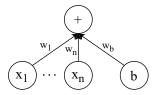


Figure 7.7: Example of perceptron

7.4.1 Training

Algorithm 2 Perceptron training

Note that the algorithm converges only if the dataset is linearly separable. In practice, a maximum number of iterations is set.

7.5 Support vector machine

Convex hull The convex hull of a set of points is the tightest enclosing convex polygon that contains those points.

Note: the convex hulls of a linearly separable dataset do not intersect.

Maximum margin hyperplane Hyperplane with the maximum margin between two convex hulls.

Maximum margin hyperplane

In general, a subset of points (support vectors) in the training set is sufficient to define the hulls.

Support vectors

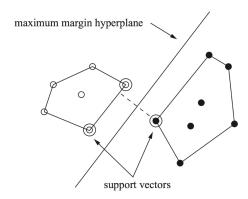


Figure 7.8: Maximum margin hyperplane of linearly separable data

Support vector machine SVM² finds the maximum margin hyperplane and the support vectors as a constrained quadratic optimization problem. Given a dataset of D elements and n features, the problem is defined as:

Support vector machine

$$\max_{w_0, w_1, \dots, w_n} M$$

subject to
$$\sum_{i=1}^{n} w_i^2 = 1$$

$$c_i(w_0 + w_1 x_{i1} + \dots + w_n x_{in}) \ge M \ \forall i = 1, \dots, D$$

where M is the margin, w_i are the weights of the hyperplane and $c_i = \{-1, 1\}$ is the class. The second constraint imposes the hyperplane to have a large margin. For positive labels $(c_i = 1)$, this is true when the hyperplane is positive. For negative labels $(c_i = -1)$, this is true when the hyperplane is negative.

Soft margin As real-world data is not always linearly separable, soft margin relaxes the margin constraint by adding a penalty C. The margin constraint becomes:

Soft margin

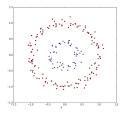
$$c_i(w_0 + w_1x_{i1} + \dots + w_nx_{in}) \ge M - \xi_i \ \forall i = 1,\dots, D$$

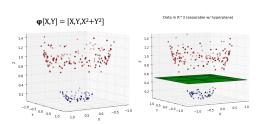
where $\xi_i \ge 0$ and $\sum_{i=0}^D \xi_i = C$

7.5.1 Kernel trick

For non-linearly separable data, the boundary can be found using a non-linear mapping to map the data into a new space (feature space) where a linear separation is possible. Then, the data and the boundary is mapped back into the original space.

Kernel trick





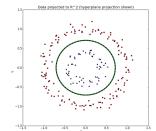


Figure 7.9: Example of mapping from \mathbb{R}^2 to \mathbb{R}^3

The kernel trick allows to avoid explicitly mapping the dataset into the new space by using kernel functions. Known kernel functions are:

Linear
$$K(x,y) = \langle x,y \rangle$$
.

Polynomial $K(x,y) = (\gamma \langle x,y \rangle + r)^d$, where γ , r and d are parameters.

Radial based function $K(x,y) = \exp(-\gamma ||x-y||^2)$, where γ is a parameter.

Sigmoid $K(x,y) = \tanh(\langle x,y \rangle + r)$, where r is a parameter.

²https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/AndrewNg_SVM_note.pdf

7.5.2 Complexity

Given a dataset with D entries of n features, the complexity of SVM scales from $O(nD^2)$ to $O(nD^3)$ depending on the effectiveness of data caching.

7.5.3 Characteristics

- Training an SVM model is generally slower.
- SVM is not affected by local minimums.
- SVM does not suffer the curse of dimensionality.
- SVM does not directly provide probability estimates. If needed, these can be computed using a computationally expensive method.

7.6 Neural networks

Multilayer perceptron Hierarchical structure of perceptrons, each with an activation function

Multilayer perceptron

Activation function Activation functions are useful to add non-linearity.

Activation function

Remark. In a linear system, if there is noise in the input, it is transferred to the output (i.e. linearity implies that f(x+noise) = f(x)+f(noise)). On the other hand, a non-linear system is generally more robust (i.e. non-linearity generally implies that $f(x+\text{noise}) \neq f(x) + f(\text{noise})$)

Feedforward neural network Network with the following flow:

Feedforward neural network

Input layer \rightarrow Hidden layer \rightarrow Output layer

Neurons at each layer are connected to all neurons of the next layer.

7.6.1 Training

Inputs are fed to the network and backpropagation is used to update the weights.

Learning rate Size of the step for gradient descent.

Learning rate

Epoch A round of training where the entire dataset is processed.

Epoch

Stopping criteria Possible conditions to stop the training are:

Stopping criteria

- Small weights update.
- The classification error goes below a predefined target.
- Timeout or maximum number of epochs.

Regularization Smoothing of the loss function.

Regularization

7.7 K-nearest neighbors

K-nearest neighbors Given a similarity metric and a training set, to predict a new observation, the k most similar entries in the training set are selected and the class of the new data is determined as the most frequent class among the k entries.

K-nearest neighbors

7.8 Binary to multi-class classification

One-vs-one strategy (OVO) Train a classifier for all the possible pairs of classes (this will result in $\frac{C \cdot (C-1)}{2}$ pairs). The class assigned to a new observation is determined through a majority vote.

One-vs-one strategy (OVO)

One-vs-rest strategy (OVR) Train C classifiers where each is specialized to classify a specific class as positive and the others as negative. The class assigned to a new observation is determined by the confidence score of each classifier.

One-vs-rest strategy (OVR)

7.9 Ensemble methods

Train a set of base classifiers and make predictions by majority vote. If all the classifiers have the same but independent error rate, the overall error of the ensemble model is lower (derived from a binomial distribution).

Ensemble methods

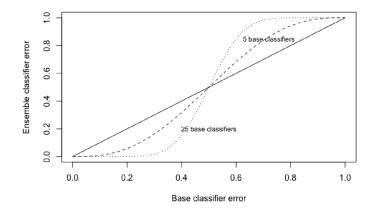


Figure 7.10: Relationship between the error of base classifiers and ensemble models

Different strategies to train an ensemble classifier can be used:

Dataset manipulation Resampling the dataset for each base classifier:

Bagging Sample with replacement with a uniform distribution.

Boosting Iteratively change the distribution of the training data prioritizing examples difficult to classify.

Adaboost Iteratively train base classifiers on a dataset where samples misclassified at the previous iteration have a higher weight.

Adaboost

Feature manipulation Train a base classifier using only a subset of the features.

Class labels manipulation Train a base classifier to classify a partition of the class labels. For instance, class labels can be partitioned into two groups A_1 and A_2 , and the base classifier is trained to assign as label one of the two groups. During inference, when a group is predicted, all labels within that group receive a vote.

7.9.1 Random forests

Multiple decision trees trained on a different random sampling of the training set and different subsets of features. A prediction is made by averaging the output of each tree.

Random forests

Bias Simplicity of the target function of a model.

Bias

Variance Amount of change of the target function when using different training data (i.e. Variance how much the model overfits).

Random forests aim to reduce the high variance of decision trees.

8 Regression

Linear regression Given:

Linear regression

- \bullet A dataset X of N rows and D features.
- A response vector \mathbf{y} of N continuous values.

We want to learn the parameters $\mathbf{w} \in \mathbb{R}^D$ such that:

$$\mathbf{y} \approx \mathbf{X} \mathbf{w}^T$$

Mean squared error To find the parameters for linear regression, we minimize as loss Mean squared error function the mean squared error:

$$\mathcal{L}(\mathbf{w}) = \|\mathbf{X}\mathbf{w}^T - \mathbf{y}\|^2$$

Its gradient is:

$$\nabla \mathcal{L}(\mathbf{w}) = 2\mathbf{X}^T (\mathbf{X}\mathbf{w}^T - \mathbf{y})$$

Constraining it to 0, we obtain the problem:

$$\boldsymbol{X}^T \boldsymbol{X} \mathbf{w}^T = \boldsymbol{X}^T \mathbf{y}$$

If X^TX is invertible, this can be solved analytically but could lead to overfitting. Numerical methods are therefore more suited.

Note that:

- MSE is influenced by the magnitude of the data.
- It measures the fitness of a model in absolute terms.

Coefficient of determination Given:

Coefficient of determination

- The mean of the observed data: $y_{\text{avg}} = \frac{1}{N} \sum_{i} \mathbf{y}_{i}$.
- The sum of the squared residuals: $SS_{\text{res}} = \sum_{i} (\mathbf{y}_i \mathbf{w}^T \mathbf{x}_i)^2$.
- The total sum of squares: $SS_{\text{tot}} = \sum_{i} (\mathbf{y}_i y_{\text{avg}})^2$.

The coefficient of determination is given by:

$$R^2 = 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}}$$

Intuitively, R^2 compares the model with a horizontal straight line (y_{avg}) . When $R^2 = 1$, the model has a perfect fit. When R^2 is outside the range [0, 1], then the model is worse than a straight line.

Note that:

- R² is a standardized index.
- R² tells how well the variables of the predictor can explain the variation in the target.
- R² is not suited for non-linear models.

Polynomial regression Find a polynomial instead of a hyperplane.

Polynomial regression

9 Clustering

9.1 Similarity and dissimilarity

Similarity Measures how alike two objects are. Often defined in the range [0, 1].

Similarity

Dissimilarity Measures how two objects differ. 0 indicates no difference while the upper bound varies.

Dissimilarity

Attribute type	Dissimilarity	Similarity
Nominal	$d(p,q) = \begin{cases} 0 & \text{if } p = q \\ 1 & \text{if } p \neq q \end{cases}$	s(p,q) = 1 - d(p,q)
Ordinal	$d(p,q) = \frac{ p-q }{V}$ with $p,q \in \{0,\dots,V\}$	s(p,q) = 1 - d(p,q)
Interval or ratio	d(p,q) = p - q	$s(p,q) = \frac{1}{1 + d(p,q)}$

Table 9.1: Similarity and dissimilarity by attribute type

Similarity properties

- 1. sim(p, q) = 1 iff p = q.
- $2. \ \sin(p,q) = \sin(q,p).$

9.1.1 Distance

Given two D-dimensional data entries p and q, possible distance metrics are:

Minkowski distance (L_r)

Minkowski distance

$$ext{dist}(p,q) = \left(\sum_{d=1}^D \left|p_d - q_d
ight|^r
ight)^{rac{1}{r}}$$

where r is a parameter.

Common values for r are:

- r=1 Corresponds to the L_1 norm. It is useful for discriminating 0 distance and near-0 distance as an ε change in the data corresponds to an ε change in the distance.
- r=2 Corresponds to the Euclidean distance or L_2 norm.
- $r = \infty$ Corresponds to the L_{∞} norm. Considers only the dimensions with the maximum difference.

Mahalanobis distance

Mahalanobis distance

$$\mathrm{dist}(p,q) = \sqrt{(p-q)\boldsymbol{\Sigma}^{-1}(p-q)^T}$$

where Σ is the covariance matrix of the dataset. The Mahalanobis distance of p and q increases when the segment connecting them points towards a direction of greater variation of the data.

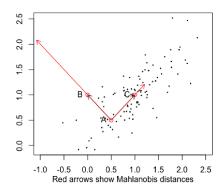


Figure 9.1: The Mahalanobis distance between (A, B) is greater than (A, C), while the Euclidean distance is the same.

Distance properties

Positive definiteness $dist(p,q) \ge 0$ and dist(p,q) = 0 iff p = q.

Symmetry dist(p,q) = dist(q,p)

Triangle inequality $dist(p,q) \leq dist(p,r) + dist(r,q)$

9.1.2 Vector similarity

Binary vectors Given two examples p and q with binary features, we can compute the following values:

 $M_{00} =$ number of features that equals to 0 for both p and q

 $M_{01} =$ number of features that equals to 0 for p and 1 for q

 $M_{10} =$ number of features that equals to 1 for p and 0 for q

 M_{11} = number of features that equals to 1 for both p and q

Possible distance metrics are:

Simple matching coefficient
$$\mathrm{SMC}(p,q)=\frac{M_{00}+M_{11}}{M_{00}+M_{01}+M_{10}+M_{11}}$$
 Jaccard coefficient $\mathrm{JC}(p,q)=\frac{M_{11}}{M_{01}+M_{10}+M_{11}}$

Simple matching coefficient Jaccard coefficient

Cosine similarity Cosine of the angle between two vectors:

Cosine similarity

$$\cos(p,q) = \frac{p \cdot q}{\|p\| \cdot \|q\|}$$

Extended Jaccard coefficient (Tanimoto) Variation of the Jaccard coefficient for continuous values:

Extended Jaccard coefficient (Tanimoto)

$$\mathtt{T}(p,q) = \frac{p \cdot q}{\|p\|^2 + \|q\|^2 - p \cdot q}$$

9.1.3 Correlation

Pearson's correlation Measure of linear relationship between a pair of quantitative attributes e_1 and e_2 . To compute Pearson's correlation, the values of e_1 and e_2 are first standardized and then ordered to obtain the vectors \mathbf{e}_1 and \mathbf{e}_2 . The correlation is then computed as the dot product between \mathbf{e}_1 and \mathbf{e}_2 :

Pearson's correlation

$$corr(e_1, e_2) = \langle \mathbf{e}_1, \mathbf{e}_2 \rangle$$

Pearson's correlation has the following properties:

- If the variables are independent, then the correlation is 0 (but not vice versa).
- If the correlation is 0, then there is no linear relationship between the variables.
- +1 implies positive linear relationship, -1 implies negative linear relationship.

Symmetric uncertainty Measure of correlation for nominal attributes:

Symmetric uncertainty

$$U(e_1, e_2) = 2\frac{H(e_1) + H(e_2) - H(e_1, e_2)}{H(e_1) + H(e_2)} \in [0, 1]$$

where H is the entropy.

9.2 Clustering definitions

Clustering Given a set of D-dimensional objects \mathbf{x}_i , we want to partition them into K clusters (and potentially recognize outliers). In other words, we are looking for a mapping:

$$\texttt{cluster}(\mathbf{x}_i) \in \{1, \dots, K\}$$

such that objects in the same cluster are similar.

Centroid Average of the coordinates of the points in a cluster. For a cluster K_i , the d-th coordinate of its centroid is given by:

$$\mathtt{centroid}(K_i)[d] = \frac{1}{|K_i|} \sum_{\mathbf{x} \in K_i} \mathbf{x}[d]$$

Medoid Element of the cluster with minimum average dissimilarity to all other points. Medoid Differently from the centroid, the medoid must be an existing point of the dataset.

Proximity functions Measures to determine the similarity of two data points:

Proximity function

Euclidean distance

9.3 Metrics

Cohesion Measures the similarity (proximity) of the objects in the same cluster. Given a Cohesion cluster K_i , cohesion is computed as:

$$\mathtt{cohesion}(K_i) = \sum_{\mathbf{x} \in K_i} \mathtt{dist}(\mathbf{x}, \mathbf{c}_i)$$

where \mathbf{c}_i can be the centroid or medoid and dist is a proximity function.

Separation Measures the distance of two clusters. Given two clusters K_i and K_j , their separation is:

$$separation(K_i, K_j) = dist(\mathbf{c}_i, \mathbf{c}_j)$$

where \mathbf{c}_i and \mathbf{c}_j are respectively the centroids of K_i and K_j , and dist is a proximity function.

Sum of squared errors Measures for each cluster the distance between its points to its centroid. Can be seen as the application of distortion (Section 9.4) to clustering:

Sum of squared errors

$$exttt{SSE}_j = \sum_{\mathbf{x}_i \in K_i} exttt{dist}(\mathbf{x}_i, \mathbf{c}_j)^2$$

where K_j is the j-th cluster and \mathbf{c}_j is its centroid.

If SSE_j is high, the cluster has low quality. If $SSE_j = 0$, all points in the cluster correspond to the centroid.

The sum of squared errors of K clusters is:

$$ext{SSE} = \sum_{j=1}^{K} ext{SSE}_j$$

Sum of squares between clusters Given the global centroid of the dataset \mathbf{c} and K clusters each with N_i objects, the sum of squares between clusters is given by:

Sum of squares between clusters

$$exttt{SSB} = \sum_{i=1}^K N_i \cdot exttt{dist}(\mathbf{c}_i, \mathbf{c})^2$$

Total sum of squares Sum of the squared distances between the points of the dataset and the global centroid. It can be shown that the total sum of squares can be computed as:

Total sum of squares

$$TSS = SSE + SSB$$

Theorem 9.3.1. Minimize SSE \iff maximize SSB.

Silhouette score The Silhouette score of a data point \mathbf{x}_i belonging to a cluster K_i is given Silhouette score by two components:

Sparsity contribution The average distance of \mathbf{x}_i to the other points in K_i :

$$a(\mathbf{x}_i) = \frac{1}{|K_i|-1} \sum_{\mathbf{x}_j \in K_i, \mathbf{x}_j \neq \mathbf{x}_i} \mathtt{dist}(\mathbf{x}_i, \mathbf{x}_j)$$

Separation contribution The average distance of \mathbf{x}_i to the points in the nearest cluster:

$$b(\mathbf{x}_i) = \min_{K_j, K_j
eq K_i} \left(rac{1}{|K_j|} \sum_{\mathbf{w} \in K_j} \mathtt{dist}(\mathbf{x}_i, \mathbf{w})
ight)$$

The Silhouette score of \mathbf{x}_i is then computed as:

$$s(\mathbf{x}_i) = \frac{b(\mathbf{x}_i) - a(\mathbf{x}_i)}{\max\{a(\mathbf{x}_i), b(\mathbf{x}_i)\}} \in [-1, 1]$$

The Silhouette score S of K clusters is given by the average Silhouette scores of each data point. $S \to 1$ indicates correct clusters, $S \to -1$ indicates incorrect clusters.

Golden standard Evaluation using a labeled dataset. Consider the elements of the same cluster as labeled with the same class.

Golden standard

Classification-oriented Traditional classification metrics such as accuracy, recall, precision, . . .

Similarity-oriented Given a learnt clustering scheme $y_K(\cdot)$ and the golden standard scheme $y_G(\cdot)$ where $y_i(\mathbf{x})$ indicates the label/cluster of \mathbf{x} , each pair of data $(\mathbf{x}_1, \mathbf{x}_2)$ can be labeled with:

SGSK if
$$y_G(\mathbf{x}_1) = y_G(\mathbf{x}_2)$$
 and $y_K(\mathbf{x}_1) = y_K(\mathbf{x}_2)$.

SGDK if
$$y_G(\mathbf{x}_1) = y_G(\mathbf{x}_2)$$
 and $y_K(\mathbf{x}_1) \neq y_K(\mathbf{x}_2)$.

DGSK if
$$y_G(\mathbf{x}_1) \neq y_G(\mathbf{x}_2)$$
 and $y_K(\mathbf{x}_1) = y_K(\mathbf{x}_2)$.

DGDK if
$$y_G(\mathbf{x}_1) \neq y_G(\mathbf{x}_2)$$
 and $y_K(\mathbf{x}_1) \neq y_K(\mathbf{x}_2)$.

Then, the following metrics can be computed:

Rand score
$$\frac{\text{SGSK} + \text{DGDK}}{\text{SGSK} + \text{SGDK} + \text{DGSK} + \text{DGDK}}$$

Adjusted rand score Modification of the rand score to take into account that some agreements may happen by chance.

Jaccard coefficient For each class c, the Jaccard coefficient is given by:

$$\frac{\mathtt{SG}_c\mathtt{SK}_c}{\mathtt{SG}_c\mathtt{SK}_c+\mathtt{SG}_c\mathtt{DK}_c+\mathtt{DG}_c\mathtt{SK}_c}$$

9.4 K-means

Algorithm Clustering algorithm that iteratively improves the centroids. Given the desired K-means number of clusters K, the algorithm works as follows:

- 1. Randomly choose K initial centroids.
- 2. Each data point belongs to the cluster represented by the nearest centroid.
- 3. Update the centroids as the centroids of the newly found clusters. Go to 2.

Distortion Given:

- a D-dimensional dataset of N points \mathbf{x}_i ;
- an encoding function encode : $\mathbb{R}^D \to [1, K]$;
- a decoding function decode : $[1, K] \to \mathbb{R}^D$.

Distortion (or inertia) is defined as:

$$\mathtt{distortion} = \sum_{i=1}^{N} \left(\mathbf{x}_i - \mathtt{decode}(\mathtt{encode}(\mathbf{x_i}))\right)^2$$

Theorem 9.4.1. To minimize the distortion, it is required that:

- 1. \mathbf{x}_i is encoded with its nearest center.
- 2. The center of a point is the centroid of the cluster it belongs to.

Note that k-means alternates points 1 and 2.

Proof. The second point is derived by imposing the derivative of distortion to 0.

Elbow method Inertia decreases monotonically and can be used to determine an ideal number of clusters. By computing the inertia for varying K, a plausible value is the one corresponding to the point where the slope decreases.

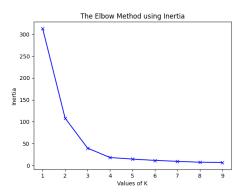


Figure 9.2: Plot of inertia. Possibly good values for K are around 3

The Silhouette score can also be used by selecting the K corresponding to its maximum. Note that, compared to inertia, Silhouette is computationally more expensive.

Properties

Termination There are a finite number of ways to cluster N objects into K clusters. By construction, at each iteration, the **distortion** is reduced. Therefore, k-means is guaranteed to terminate.

Non-optimality The solution found by k-means is not guaranteed to be a global best. The choice of starting points heavily influences the final result. The starting configuration is usually composed of points distant as far as possible.

Noise Outliers heavily influence the clustering result. Sometimes, it is useful to remove them.

Complexity Given a D-dimensional dataset of N points, running k-means for T iterations to find K clusters has complexity O(TKND).

9.5 Hierarchical clustering

Dendrogram Tree-like structure where the root is a cluster of all the data points and the Dendrogram leaves are clusters with a single data point.

Agglomerative Starts with a cluster per data point and iteratively merges them (leaves Agglomerative to root). Uses cluster separation metrics.

Divisive Starts with a cluster containing all the data points and iteratively splits them Divisive (root to leaves). Uses cluster cohesion metrics.

Cluster separation measures Measure the distance between two clusters K_i and K_j .

Single link Minimum distance of the points in the two clusters:

Single link

$$\mathtt{sep}(K_i,K_j) = \min_{\mathbf{x} \in K_i, \mathbf{y} \in K_j} \mathtt{dist}(\mathbf{x},\mathbf{y})$$

Tends to create larger clusters.

Complete link Maximum distance of the points in the two clusters:

Complete link

$$\operatorname{\mathsf{sep}}(K_i, K_j) = \max_{\mathbf{x} \in K_i, \mathbf{y} \in K_j} \operatorname{\mathsf{dist}}(\mathbf{x}, \mathbf{y})$$

Tends to create more compact clusters.

Average link Average distance of the points in the two clusters:

Average link

$$\mathtt{sep}(K_i, K_j) = \frac{1}{|K_i| \cdot |K_j|} \sum_{\mathbf{x} \in K_i, \mathbf{y} \in K_j} \mathtt{dist}(\mathbf{x}, \mathbf{y})$$

Centroid-based Distance between the centroids of the two clusters.

Centroid-based

Ward's method Let K_m be the cluster obtained by merging K_i and K_j . The distance between K_i and K_j is determined as:

Ward's method

$$sep(K_i, K_j) = SSE(K_m) - (SSE(K_i) + SSE(K_j))$$

9.5.1 Agglomerative clustering

Algorithm

Agglomerative clustering

- 1. Initialize a cluster for each data point.
- 2. Compute the distance matrix between each cluster.
- 3. Merge the two clusters with the lowest separation, drop their values from the distance matrix and add a row/column for the newly created cluster.
- 4. Go to point 2. if the number of clusters is greater than one.

After the construction of the dendrogram, a cut can be performed at a user-defined level. A cut near the root will result in few bigger clusters. A cut near the leaves will result in numerous smaller clusters.

Properties

Complexity Space complexity of $O(N^2)$ to store the distance matrix.

Time complexity of $O(N^3)$ (O(N) iterations with a $O(N^2)$ search for the pair to merge and O(N) to recompute the distance matrix) that can be reduced to $O(N^2 \log(N))$ when using indexing.

9.6 Density-based clustering

Consider as clusters the high-density areas of the data space.

Grid-based Split the data space into a grid and count the number of points in each tile.

Object-centered Count, for each point, the number of neighbors within a radius.

9.6.1 DBSCAN

Neighborhood **Neighborhood** Given a radius ε , the neighborhood of a point **x** are the points within an ε -sphere centered on **x**.

Core point Core point Given a minimum number of neighbors m, a point \mathbf{x} is a core point if it has at least m neighbors.

Border point A point **x** is a border point if it is not a core point.

Border point

Directly density reachable A point **p** is directly density reachable from **q** iff:

Directly density reachable

- q is a core point.
- **q** is a neighbor of **p**.

Density reachable A point **p** is density reachable from **q** iff:

Density reachable

- q is a core point.
- There exists a sequence of points s_1, \ldots, s_z such that:
 - $-\mathbf{s}_1$ is directly density reachable from \mathbf{q} .
 - \mathbf{s}_{i+1} is directly density reachable from \mathbf{s}_i .
 - \mathbf{p} is directly density reachable from \mathbf{s}_z .

Density connected A point \mathbf{p} is density connected to \mathbf{q} iff there exists a point \mathbf{s} such that both \mathbf{p} and \mathbf{q} are density reachable from \mathbf{s} .

Density connected

Algorithm Determine clusters as maximal sets of density connected points. Border points not density connected to any core point are labeled as noise.

DBSCAN

In other words, what happens is the following:

- Neighboring core points are part of the same cluster.
- Border points are part of the cluster of their nearest core point neighbor.
- Border points without a core point neighbor are noise.

Properties

Robustness Able to find clusters of any shape and detect noise.

Hyperparameters Sensible to the choice of the radius ε and minimum neighbors m.

K-distance method

- 1. Determine for each point its k-distance as the distance to its k-nearest neighbors.
- 2. Sort the points by decreasing k-distance and plot them.
- 3. Use as possible ε the values around the area where the slope decreases (similarly to the elbow method).

Complexity Complexity of $O(N^2)$, reduced to $O(N \log N)$ if using spatial indexing.

9.6.2 DENCLUE

Kernel density estimation Statistical method to estimate the distribution of a dataset through a function.

Kernel density estimation

Kernel function Symmetric and monotonically decreasing function to describe the influence of a data point on its neighbors.

Kernel function

A typical kernel function is the Gaussian.

Overall density function The overall density of the dataset is obtained as the sum of the kernel function evaluated at each data point.

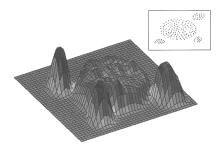


Figure 9.3: Example of density function from a set of points (top right) using a Gaussian kernel

Algorithm Given a threshold ξ , DENCLUE works as follows:

DENCLUE

Gaussian mixture

- 1. Derive a density function of the dataset.
- 2. Identify local maximums and consider them as density attractors.
- 3. Associate to each data point the density attractor in the direction of maximum increase.
- 4. Points associated with the same density attractor are part of the same cluster.
- 5. Remove clusters with a density attractor lower than ξ .
- 6. Merge clusters connected through a path of points whose density is greater or equal to ξ (e.g. in Figure 9.3 the center area will result in many small clusters that can be merged with an appropriate ξ).

Properties

Robustness Able to recognize clusters of different shapes and handle noise.

High dimension weakness Does not perform well with high-dimensional data with different densities.

Complexity Computational complexity of $O(N^2)$.

9.7 Model-based clustering

Assuming that the attributes are independent random variables, model-based clustering finds a set of distributions (one per cluster) that describe the data.

Gaussian mixture (expectation maximization)

Algorithm

- 1. Select an initial set of parameters for the distributions.
- 2. Expectation step: for each data point, compute its probability to belong to each distribution.
- 3. Maximization step: tweak the parameters to maximize the likelihood (i.e. move the Gaussian towards the center of the cluster).
- 4. Go to point 2. until convergence.

10 Association rules

10.1 Frequent itemset

Itemset Collection of one or more items (e.g. {milk, bread, diapers}).

Itemset

K-itemset Itemset with k items.

K-itemset

Support count Number of occurrences of an itemset in a dataset.

Support count

Example.

Given the following transactions:

	0
1	bread, milk
2	beer, bread, diaper, eggs
3	heer coke dianer milk

The support count of the itemset containing bread, diapers and milk is:

$$\sigma(\{\text{bread}, \text{diapers}, \text{milk}\}) = 2$$

bread, coke, diaper, milk

Association rule Given two itemsets A and C, an association rule has form:

Association rule

$$A \to C$$

It means that there are transactions in the dataset where A and C co-occur. Note that it is not strictly a logical implication.

Metrics

Support Given N transactions, the support of an itemset A is:

Support

$$\sup(A) = \frac{\sigma(A)}{N}$$

The support of an association rule $A \to C$ is:

$$\sup(A \to C) = \sup(A \cup C) = \frac{\sigma(A \cup C)}{N}$$

Low support implies random associations.

Frequent itemset Itemset whose support is at least a given threshold.

Frequent itemset

Confidence Given an association rule $A \to C$, its confidence is given by:

Confidence

$$\mathrm{conf}(A \to C) = \frac{\sigma(A \cup C)}{\sigma(A)} \in [0,1]$$

Low confidence implies low reliability.

Theorem 10.1.1. The confidence of $A \to C$ can be computed given the supports of $A \to C$ and A:

$$\mathrm{conf}(A \to C) = \frac{\mathrm{sup}(A \to C)}{\mathrm{sup}(A)}$$

Association rule mining Given N transactions and two thresholds min_sup and min_conf, association rule mining finds all the rules $A \to C$ such that:

Association rule mining

$$\begin{split} \sup(A \to C) &\geq \min_\sup\\ \operatorname{conf}(A \to C) &\geq \min_\operatorname{conf} \end{split}$$

This can be done in two steps:

- 1. Determine the itemsets with support $\geq \min_{sup}$ (frequent itemsets).
- 2. Determine the association rules with confidence > min_conf.

Frequent itemset generation Rule generation

10.2 Frequent itemset generation

10.2.1 Brute force

Given D items, there are 2^D possible itemsets. To compute the support of a single itemset, the complexity is O(NW) where N is the number of transactions and W is the width of the largest transaction. Listing all the itemsets and computing their support have an exponential complexity of $O(NW2^D)$.

10.2.2 Apriori principle

Theorem 10.2.1. If an itemset is frequent, then all of its subsets are frequent.

Apriori principle

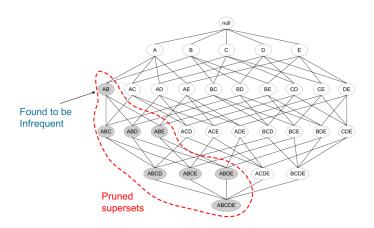
Proof. By the definition of support, it holds that:

$$\forall X, Y : (X \subseteq Y) \Rightarrow (\sup(X) \ge \sup(Y))$$

In other words, the support metric is anti-monotone.

Corollary 10.2.1.1. If an itemset is infrequent, then all of its supersets are infrequent.

Example.



Algorithm 3 Apriori principle

Complexity The complexity of the apriori principle depends on:

- The choice of the support threshold.
- The number of unique items.
- The number and the width of the transactions.

10.3 Rule generation

10.3.1 Brute force

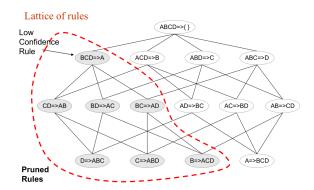
Given a frequent k-itemset L, there are 2^k-2 possible association rules (-2 as $L\to\varnothing$ and $\varnothing\to L$ can be ignored). For each possible rule, it is necessary to compute the confidence. The overall complexity is exponential.

10.3.2 Apriori principle

Theorem 10.3.1. Without loss of generality, consider an itemset $\{A, B, C, D\}$. It holds Apriori principle that:

$$conf(ABC \to D) \ge conf(AB \to CD) \ge conf(A \to BCD)$$

Example.



10.4 Interestingness measures

Contingency table Given an association rule $A \to C$, its contingency table is defined as: Contingency table

	C	\overline{C}	
\overline{A}	$\mathcal{P}(A \wedge C)$	$\mathcal{P}\left(A \wedge \overline{C}\right)$	$\mathcal{P}\left(A\right)$
\overline{A}	$\mathcal{P}\left(\overline{A}\wedge C\right)$	$\mathcal{P}\left(\overline{A}\wedge\overline{C}\right)$	$\mathcal{P}\left(\overline{A}\right)$
	$\mathcal{P}\left(C\right)$	$\mathcal{P}\left(\overline{C} ight)$	100

Remark. Confidence can be misleading.

Example.

Conviction

Given the following contingency table:

	coffee	$\overline{\text{coffee}}$	
tea	15	5	20
$\overline{\text{tea}}$	75	5	80
	90	10	100

We have that:

$$\texttt{conf}(\text{tea} \rightarrow \text{coffee}) = \frac{\texttt{sup}(\text{tea}, \text{coffee})}{\texttt{sup}(\text{tea})} = \frac{15}{20} = 0.75$$

But, we also have that:

$$\mathcal{P} (\text{coffee}) = 0.9$$
 $\mathcal{P} (\text{coffee} \mid \overline{\text{tea}}) = \frac{75}{80} = 0.9375$

So, despite the high confidence of (tea \rightarrow coffee), the probability of coffee increases in absence of tea.

Leverage

Conviction

10.4.1 Statistical-based measures

Measures that take into account the statistical independence of the items.

Lift Lift

$$\mathtt{lift}(A \to C) = \frac{\mathtt{conf}(A \to C)}{\mathtt{sup}(C)} = \frac{\mathcal{P}\left(A \land C\right)}{\mathcal{P}\left(A\right)\mathcal{P}\left(C\right)}$$

If $lift(A \rightarrow C) = 1$, then A and C are independent.

Leverage $leve(A \to C) = \sup(A \cup C) - \sup(A)\sup(C) = \mathcal{P}(A \land C) - \mathcal{P}(A)\mathcal{P}(C)$

If $leve(A \rightarrow C) = 0$, then A and C are independent.

$conv(A \setminus C) =$	$1-\sup(C)$	$\mathcal{P}(A)(1-\mathcal{P}(C))$
$Conv(A \rightarrow C) =$	$\frac{1 - \sup(C)}{1 - \operatorname{conf}(A \to C)} =$	$\overline{\mathcal{P}(A) - \mathcal{P}(A \wedge C)}$

Metric	Interpretation
High support	The rule applies to many transactions.
High confidence	The chance that the rule is true for some transactions is
	high.
High lift	Low chance that the rule is just a coincidence.
High conviction	The rule is violated less often compared to the case when
	the antecedent and consequent are independent.

Table 10.1: Intuitive interpretation of the measures

10.5 Multi-dimensional association rules

Mono-dimensional events Represented as transactions. Each event contains items that appear together.

Mono-dimensional events

Multi-dimensional events Represented as tuples. Each event contains the values of its attributes.

Multi-dimensional events

Mono/Multi-dimensional equivalence Mono-dimensional events can be converted into multi-dimensional events and vice versa.

Equivalence

To transform quantitative attributes, it is usually useful to discretize them.

Example (Multi to mono).

\mathbf{Id}	co2	tin_{-} oxide		\mathbf{Id}	Transaction
1	high	medium	\rightarrow	1	{co2/high, tin_oxide/medium}
2	medium	low		2	$\{co2/medium, tin_oxide/low\}$

Example (Mono to multi).

Id	a	b	\mathbf{c}	\mathbf{d}		Id	Transaction
1	yes	yes	no	no	\leftarrow	1	$\{a,b\}$
2	yes	no	yes	no		2	$\{a,c\}$

10.6 Multi-level association rules

Organize items into a hierarchy.

Specialized to general Generally, the support of the rule increases.

General to specialized Generally, the support of the rule decreases.

Specialized to general

Example. From (apple \rightarrow milk) to (fruit \rightarrow dairy)

General to specialized

Example. From (fruit \rightarrow dairy) to (apple \rightarrow milk)

Redundant level

Redundant level A more specialized rule in the hierarchy is redundant if its confidence is similar to the one of a more general rule.

Multi-level association rule mining

Multi-level association rule mining Run association rule mining on different levels of abstraction (general to specialized). At each level, the support threshold is decreased.

<end of course>