# Image Processing and Computer Vision (Module 2)

Last update: 16 April 2024

## **Contents**

| 1 | Can | nera calibration                      | 1 |
|---|-----|---------------------------------------|---|
|   | 1.1 | Forward imaging model                 | 1 |
|   |     | 1.1.1 Image pixelization (CRF to IRF) | 1 |
|   |     | 1.1.2 Roto-translation (WRF to CRF)   | 2 |
|   | 1.2 | Projective space                      |   |

## 1 Camera calibration

World reference frame (WRF) Coordinate system  $(X_W, Y_W, Z_W)$  of the real world relative to a reference point (e.g. a corner).

World reference frame (WRF)

Camera reference frame (CRF) Coordinate system  $(X_C, Y_C, Z_C)$  that characterizes a cam-

frame (CRF)

**Image reference frame (IRF)** Coordinate system (U, V) of the image. They are obtained as a perspective projection of CRF coordinates as:

Image reference frame

$$u = \frac{f}{z}x_C \qquad v = \frac{f}{z}y_C$$

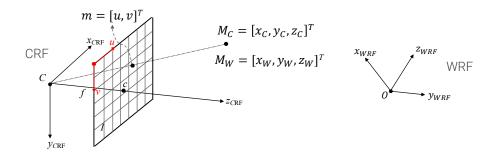


Figure 1.1: Example of WRF, CRF and IRF

### 1.1 Forward imaging model

#### 1.1.1 Image pixelization (CRF to IRF)

Image pixelization The conversion from the camera reference frame to the image reference frame is done in two steps:

Discetization **Discetization** Given the sizes (in mm)  $\Delta u$  and  $\Delta v$  of the pixels, it is sufficient to modify the perspective projection to map CRF coordinates into a discrete grid:

$$u = \frac{1}{\Delta u} \frac{f}{z_C} x_C \qquad v = \frac{1}{\Delta v} \frac{f}{z_C} y_C$$

Origin translation **Origin translation** To avoid negative pixels, the origin of the image has to be translated from the piercing point c to the top-left corner. This is done by adding an offset  $(u_0, v_0)$  to the projection (in the new system,  $c = (u_0, v_0)$ ):

$$u = \frac{1}{\Delta u} \frac{f}{z_C} x_C + u_0 \qquad v = \frac{1}{\Delta v} \frac{f}{z_C} y_C + v_0$$

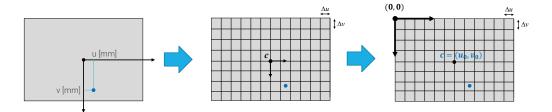


Figure 1.2: Pixelization process

Intrinsic parameters Parameters needed to convert from CRF to IRF.

Intrinsic parameters

By fixing  $f_u = \frac{f}{\Delta u}$  and  $f_v = \frac{f}{\Delta v}$ , the projection can be rewritten as:

$$u = f_u \frac{x_C}{z_C} + u_0 \qquad v = f_v \frac{y_C}{z_C} + v_0$$

Therefore, there is a total of 4 parameters:  $f_u$ ,  $f_v$ ,  $u_0$  and  $v_0$ .

#### 1.1.2 Roto-translation (WRF to CRF)

The conversion from the world reference system to the camera reference system is done Roto-translation through a roto-translation wrt the optical center.

Given:

- A WRF point  $\mathbf{M}_W = (x_W, y_W, z_W),$
- A rotation matrix  $\mathbf{R}$ ,
- A translation vector **t**,

the coordinates  $\mathbf{M}_C$  in CRF corresponding to  $\mathbf{M}_W$  are given by:

$$\mathbf{M}_C = egin{pmatrix} x_C \ y_C \ z_C \end{pmatrix} = \mathbf{R}\mathbf{M}_W + \mathbf{t} = egin{pmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{pmatrix} egin{pmatrix} x_W \ y_W \ z_W \end{pmatrix} + egin{pmatrix} t_1 \ t_2 \ t_3 \end{pmatrix}$$

**Remark.** The coordinates  $C_W$  of the optical center C are obtained as:

$$\bar{\mathbf{0}} = \mathbf{R}\mathbf{C}_W + \mathbf{t} \iff (\bar{\mathbf{0}} - \mathbf{t}) = \mathbf{R}\mathbf{C}_W \iff \mathbf{C}_W = \mathbf{R}^T(\bar{\mathbf{0}} - \mathbf{t}) \iff \mathbf{C}_W = -\mathbf{R}^T\mathbf{t}$$

#### **Extrinsic parameters**

Extrinsic parameters

- The rotation matrix  $\mathbf{R}$  has 9 elements of which 3 are independent (i.e. the rotation angles around the axes).
- $\bullet$  The translation matrix **t** has 3 elements.

Therefore, there is a total of 6 parameters.

**Remark.** It is not possible to combine the intrinsic camera model and the extrinsic roto-translation to create a linear model for the forward imaging model.

$$u = f_u \frac{r_{11}x_W + r_{12}y_W + r_{13}z_W + t_1}{r_{31}x_W + r_{32}y_W + r_{33}z_W + t_3} + u_0 \qquad v = f_v \frac{r_{21}x_W + r_{22}y_W + r_{23}z_W + t_2}{r_{31}x_W + r_{32}y_W + r_{33}z_W + t_3} + v_0$$

#### 1.2 Projective space

**Remark.** In the 2D Euclidean plane  $\mathbb{R}^2$ , parallel lines never intersect and points at infinity cannot be represented.



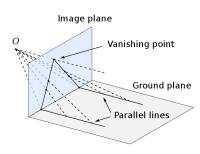


Figure 1.3: Example of point at infinity

**Remark.** Point at infinity is a point in space while the vanishing point is in the image plane.

**Homogeneous coordinates** Without loss of generality, consider the 2D Euclidean space  $\mathbb{R}^2$ .

Homogeneous coordinates

Given a coordinate (u, v) in Euclidean space, its homogeneous coordinates have an additional dimension such that:

$$(u, v) \equiv (ku, kv, k) \, \forall k \neq 0$$

In other words, a 2D Euclidean point is represented by an equivalence class of 3D points.

**Projective space** Space  $\mathbb{P}^n$  associated with the homogeneous coordinates of an Euclidean Projective space space  $\mathbb{R}^n$ .

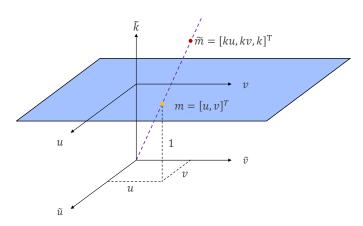


Figure 1.4: Example of projective space  $\mathbb{P}^2$ 

**Remark.**  $\bar{\mathbf{0}}$  is not a valid point in  $\mathbb{P}^n$ .

**Remark.** A projective space allows to homogeneously handle both ordinary (image) and ideal (scene) points without introducing additional complexity.

**Point at infinity** Given the parametric equation of a 2D line defined as:

Point at infinity

$$\mathbf{m} = \mathbf{m}_0 + \lambda \mathbf{d} = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} + \lambda \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} u_0 + \lambda a \\ v_0 + \lambda b \end{pmatrix}$$

It is possible to define a generic point in the projective space along the line m as:

$$\tilde{\mathbf{m}} \equiv \begin{pmatrix} \mathbf{m} \\ 1 \end{pmatrix} \equiv \begin{pmatrix} u_0 + \lambda a \\ v_0 + \lambda b \\ 1 \end{pmatrix} \equiv \begin{pmatrix} \frac{u_0}{\lambda} + a \\ \frac{v_0}{\lambda} + b \\ \frac{1}{\lambda} \end{pmatrix}$$

The projective coordinates  $\tilde{\mathbf{m}}_{\infty}$  of the point at infinity of a line m is given by:

$$\tilde{\mathbf{m}}_{\infty} = \lim_{\lambda \to \infty} \tilde{\mathbf{m}} \equiv \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$$

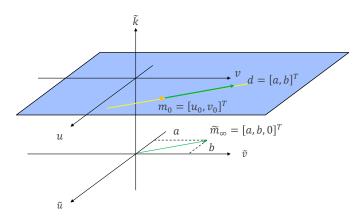


Figure 1.5: Example of infinity point in  $\mathbb{P}^2$ 

In 3D, the definition is trivially extended as:

$$\tilde{\mathbf{M}}_{\infty} = \lim_{\lambda \to \infty} \begin{pmatrix} \frac{x_0}{\lambda} + a \\ \frac{y_0}{\lambda} + b \\ \frac{z_0}{\lambda} + c \\ \frac{1}{\lambda} \end{pmatrix} \equiv \begin{pmatrix} a \\ b \\ c \\ 0 \end{pmatrix}$$

**Perspective projection** Given a point  $\mathbf{M}_C = (x_C, y_C, z_C)$  in the CRF and its corresponding point  $\mathbf{m} = (u, v)$  in the image, the non-linear perspective projection in Euclidean space can be done linearly in the projective space as:

Perspective projection in projective space

$$\tilde{\mathbf{m}} \equiv \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \equiv \begin{pmatrix} f_u \frac{x_C}{z_C} + u_0 \\ f_v \frac{y_C}{z_C} + v_0 \\ 1 \end{pmatrix} \equiv z_C \begin{pmatrix} f_u \frac{x_C}{z_C} + u_0 \\ f_v \frac{y_C}{z_C} + v_0 \\ 1 \end{pmatrix}$$

$$\equiv \begin{pmatrix} f_u x_C + z_C u_0 \\ f_v y_C + z_C v_0 \\ z_C \end{pmatrix} \equiv \begin{pmatrix} f_u & 0 & u_0 & 0 \\ 0 & f_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_C \\ y_C \\ z_C \\ 1 \end{pmatrix} \equiv \mathbf{P}_{int} \tilde{\mathbf{M}}_C$$

**Remark.** The equation can be written to take account of the arbitrary scale factor k as:

$$k\tilde{\mathbf{m}} = \mathbf{P}_{\mathrm{int}}\tilde{\mathbf{M}}_C$$

or, if k is omitted, as:

$$\tilde{\mathbf{m}} pprox \mathbf{P}_{\mathrm{int}} \tilde{\mathbf{M}}_C$$

**Remark.** In projective space, we can also project in Euclidean space the point at infinity of parallel 3D lines in CRF with direction (a, b, c):

$$\tilde{\mathbf{m}}_{\infty} \equiv \mathbf{P}_{\text{int}} \begin{pmatrix} a \\ b \\ c \\ 0 \end{pmatrix} \equiv \begin{pmatrix} f_u & 0 & u_0 & 0 \\ 0 & f_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ 0 \end{pmatrix} \equiv \begin{pmatrix} f_u a + c u_0 \\ f_v b + c v_0 \\ c \end{pmatrix} \equiv c \begin{pmatrix} f_u \frac{a}{c} + u_0 \\ f_v \frac{b}{c} + v_0 \\ 1 \end{pmatrix}$$

Therefore, the Euclidean coordinates are:

$$\mathbf{m}_{\infty} = \begin{pmatrix} f_u \frac{a}{c} + u_0 \\ f_v \frac{b}{c} + v_0 \end{pmatrix}$$

Note that this is not possible when c = 0.