Statistical and Mathematical Methods for Artificial Intelligence

Contents

1	Fini	ite numbers	1
	1.1	Sources of error	1
	1.2	Error measurement	1
	1.3	Representation in base β	1
	1.4	Floating-point	2
		1.4.1 Numbers distribution	2
		1	2
		1.4.3 Machine precision	3
		1.4.4 IEEE standard	3
		1.4.5 Floating-point arithmetic	3
2	Line	ear algebra	5
	2.1	Vector space	5
		2.1.1 Basis	5
		2.1.2 Dot product	5
	2.2	Matrix	6
		2.2.1 Invertible matrix	6
		2.2.2 Kernel	6
	2.3	Norms	6
		2.3.1 Vector norms	6
		2.3.2 Matrix norms	7
	2.4	Symmetric, positive definite matrices	7
	2.5	Orthogonality	8
	2.6	Projections	9
		2.6.1 Projection onto general subspaces	9
3	Line	ear systems 1	0
	3.1	Square linear systems	0
	3.2	Direct methods	0
		3.2.1 Gaussian factorization	0
		3.2.2 Gaussian factorization with pivoting	1
	3.3	Iterative methods	1
		3.3.1 Stopping criteria	2
	3 4	11 0	2

1 Finite numbers

1.1 Sources of error

Measure error Precision of the measurement instrument.

Measure error

Arithmetic error

Truncation error Approximating an infinite procedure into a finite number of iterations.

Truncation error

Inherent error Caused by the finite representation of the data (floating-point).

Arithmetic error Propagation of rounding errors in each step of an algorithm.

Inherent error

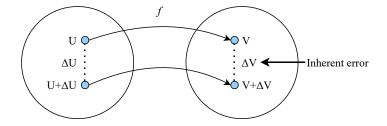


Figure 1: Inherent error visualization

1.2 Error measurement

Let x be a value and \hat{x} its approximation. Then:

Absolute error

$$E_a = \hat{x} - x$$
 (1) Absolute error

Note that, out of context, the absolute error is meaningless.

Relative error

$$E_a = \frac{\hat{x} - x}{x} \tag{2}$$
 Relative error

1.3 Representation in base β

Let $\beta \in \mathbb{N}_{>1}$ be the base. Each $x \in \mathbb{R} \setminus \{0\}$ can be uniquely represented as:

$$x = sign(x) \cdot (d_1 \beta^{-1} + d_2 \beta^{-2} + \dots d_n \beta^{-n}) \beta^p$$
 (3)

where:

- $0 \le d_i \le \beta 1$
- $d_1 \neq 0$
- starting from an index i, not all d_j $(j \ge i)$ are equal to $\beta 1$

Equation (3) can be represented using the normalized scientific notation as:

Normalized scientific notation

$$x = \pm (0.d_1 d_2 \dots) \beta^p \tag{4}$$

where $0.d_1d_2...$ is the **mantissa** and β^p the **exponent**.

Mantissa Exponent

1.4 Floating-point

A floating-point system $\mathcal{F}(\beta, t, L, U)$ is defined by the parameters:

Floating-point

- β : base
- t: precision (number of digits in the mantissa)
- [L, U]: range of the exponent

Each $x \in \mathcal{F}(\beta, t, L, U)$ can be represented in its normalized form:

$$x = \pm (0.d_1 d_2 \dots d_t) \beta^p \quad L \le p \le U \tag{5}$$

Example 1.1. In $\mathcal{F}(10, 5, -3, 3)$, $x = 12.\bar{3}$ is represented as:

$$\mathtt{fl}(x) = +0.12333 \cdot 10^2$$

1.4.1 Numbers distribution

Given a floating-point system $\mathcal{F}(\beta, t, L, U)$, the total amount of representable numbers is:

$$2(\beta-1)\beta^{t-1}(U-L+1)+1$$

Representable numbers are more sparse towards the exponent upper bound and more dense towards the lower bound. It must be noted that there is an underflow area around 0.

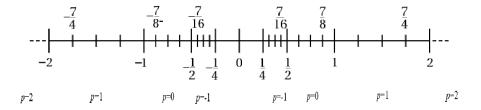


Figure 2: Floating-point numbers in $\mathcal{F}(2,3,-1,2)$

1.4.2 Numbers representation

Given a floating-point system $\mathcal{F}(\beta, t, L, U)$, the representation of $x \in \mathbb{R}$ can result in:

Exact representation if $p \in [L, U]$ and $d_i = 0$ for i > t.

Approximation if $p \in [L, U]$ but d_i may not be 0 for i > t. In this case, the representation is obtained by truncating or rounding the value.

Truncation Rounding

Underflow if p < L. In this case, the values is approximated as 0.

Overflow if p > U. In this case, an exception is usually raised.

1.4.3 Machine precision

Machine precision $\varepsilon_{\text{mach}}$ determines the accuracy of a floating-point system. Depending on Machine precision the approximation approach, machine precision can be computed as:

Truncation $\varepsilon_{\text{mach}} = \beta^{1-t}$

Rounding
$$\varepsilon_{\text{mach}} = \frac{1}{2}\beta^{1-t}$$

Therefore, rounding results in more accurate representations. $\varepsilon_{\text{mach}}$ is the smallest distance among the representable numbers (Figure 3).

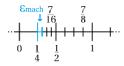


Figure 3: Visualization of $\varepsilon_{\text{mach}}$ in $\mathcal{F}(2,3,-1,2)$

In alternative, $\varepsilon_{\rm mach}$ can be defined as the smallest representable number such that:

$$fl(1 + \varepsilon_{mach}) > 1.$$

1.4.4 IEEE standard

IEEE 754 defines two floating-point formats:

Single precision Stored in 32 bits. Represents the system $\mathcal{F}(2, 24, -128, 127)$.

Double precision Stored in 64 bits. Represents the system $\mathcal{F}(2, 53, -1024, 1023)$.

As the first digit of the mantissa is always 1, it does not need to be stored. Moreover, special configurations are reserved to represent Inf and NaN.

1.4.5 Floating-point arithmetic

Let:

- $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a real numbers operation.
- $\oplus : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$ be the corresponding operation in a floating-point system.

To compute $x \oplus y$, a machine:

- 1. Calculates x + y in a high precision register (still approximated, but more precise than the storing system)
- 2. Stores the result as fl(x+y)

A floating-point operation causes a small rounding error:

$$\left| \frac{(x \oplus y) - (x+y)}{x+y} \right| < \varepsilon_{\text{mach}} \tag{6}$$

Although, some operations may be subject to the **cancellation** problem which causes information loss.

Cancellation

Example 1.2. Given x = 1 and $y = 1 \cdot 10^{-16}$, we want to compute x + y in $\mathcal{F}(10, 16, U, L)$.

$$\begin{split} z &= \mathtt{fl}(x) + \mathtt{fl}(y) \\ &= 0.1 \cdot 10^1 + 0.1 \cdot 10^{-15} \\ &= (0.1 + 0.0 \cdot 0.0 \cdot 0.0 \cdot 1) \cdot 10^1 \\ &= 0.1 \cdot 10 \cdot 0.0 \cdot 0.0 \cdot 1 \cdot 10^1 \end{split}$$

15 zeros

Then, we have that $fl(z) = 0.1 \underbrace{0...0}_{0...0} \cdot 10^1 = 1 = x$.

2 Linear algebra

2.1 Vector space

A **vector space** over \mathbb{R} is a nonempty set V, whose elements are called vectors, with two operations:

Vector space

Addition
$$+: V \times V \to V$$

Scalar multiplication $: \mathbb{R} \times V \to V$

A vector space has the following properties:

- 1. Addition is commutative and associative
- 2. A null vector exists: $\exists \bar{\mathbf{0}} \in V \text{ s.t. } \forall \mathbf{u} \in V : \bar{\mathbf{0}} + \mathbf{u} = \mathbf{u} + \bar{\mathbf{0}} = \mathbf{u}$
- 3. An identity element for scalar multiplication exists: $\forall u \in V : 1u = u$
- 4. Each vector has its opposite: $\forall u \in V, \exists a \in V : a + u = u + a = \bar{0}$
- 5. Distributive properties:

$$\forall \alpha \in \mathbb{R}, \forall \boldsymbol{u}, \boldsymbol{w} \in V : \alpha(\boldsymbol{u} + \boldsymbol{w}) = \alpha \boldsymbol{u} + \alpha \boldsymbol{w}$$

$$\forall \alpha, \beta \in \mathbb{R}, \forall \boldsymbol{u} \in V : (\alpha + \beta)\boldsymbol{u} = \alpha \boldsymbol{u} + \beta \boldsymbol{u}$$

6. Associative property:

$$\forall \alpha, \beta \in \mathbb{R}, \forall \boldsymbol{u} \in V : (\alpha \beta) \boldsymbol{u} = \alpha(\beta \boldsymbol{u})$$

A subset $U \subseteq V$ of a vector space V, is a **subspace** iff U is a vector space.

Subspace

2.1.1 Basis

Let V be a vector space of dimension n. A basis $\beta = \{v_1, \ldots, v_n\}$ of V is a set of n linear Basis independent vectors of V.

Each element of V can be represented as a linear combination of the vectors in the basis β :

$$\forall \boldsymbol{w} \in V : \boldsymbol{w} = \lambda_1 \boldsymbol{v}_1 + \dots + \lambda_n \boldsymbol{v}_n \text{ where } \lambda_i \in \mathbb{R}$$

The canonical basis of a vector space is a basis where each vector represents a dimension i (i.e. 1 in position i and 0 in all other positions).

Canonical basis

Example 2.1. The canonical basis β of \mathbb{R}^3 is $\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$

2.1.2 Dot product

The dot product of two vectors in $x, y \in \mathbb{R}^n$ is defined as:

Dot product

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^T \boldsymbol{y} = \sum_{i=1}^n x_i \cdot y_i$$

2.2 Matrix

This is a (very formal definition of) matrix:

Matrix

Kernel

Vector norm

Non-singular matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

2.2.1 Invertible matrix

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible (non-singular) if:

$$\exists B \in \mathbb{R}^{n \times n} : AB = BA = I$$

where I is the identity matrix. B is denoted as A^{-1} .

2.2.2 Kernel

The null space (kernel) of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a subspace such that:

$$\operatorname{Ker}(\boldsymbol{A}) = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} = \bar{\boldsymbol{0}} \}$$

Theorem 2.1. A square matrix A with $Ker(A) = {\bar{0}}$ is non singular.

2.3 Norms

2.3.1 Vector norms

The norm of a vector is a function:

$$\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$$

such that for each $\lambda \in \mathbb{R}$ and $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$:

- ||x|| > 0
- $\|\boldsymbol{x}\| = 0 \iff \boldsymbol{x} = 0$
- $\|\lambda \boldsymbol{x}\| = |\lambda| \cdot \|\boldsymbol{x}\|$
- $||x + y|| \le ||x|| + ||y||$

Common norms are:

2-norm
$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

1-norm
$$\|x\|_1 = \sum_{i=1}^n |x_i|$$

$$\infty$$
-norm $\|\boldsymbol{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$

In general, different norms tend to maintain the same proportion. In some cases, unbalanced results may be given when comparing different norms.

Example 2.2. Let x = (1,1000) and y = (999,1000). Their norms are:

$$\|\boldsymbol{x}\|_2 = \sqrt{1000001}$$
 $\|\boldsymbol{y}\|_2 = \sqrt{1998001}$ $\|\boldsymbol{x}\|_{\infty} = 1000$ $\|\boldsymbol{y}\|_{\infty} = 1000$

2.3.2 Matrix norms

The norm of a matrix is a function:

Matrix norm

$$\|\cdot\|:\mathbb{R}^{m\times n}\to\mathbb{R}$$

such that for each $\lambda \in \mathbb{R}$ and $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times n}$:

- $||A|| \ge 0$
- $\|\mathbf{A}\| = 0 \iff \mathbf{A} = \bar{0}$
- $\|\lambda A\| = |\lambda| \cdot \|A\|$
- $||A + B|| \le ||A|| + ||B||$

Common norms are:

2-norm $||A||_2 = \sqrt{\rho(A^T A)},$

where $\rho(X)$ is the largest absolute value of the eigenvalues of X (spectral radius).

1-norm $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{i,j}|$

Frobenius norm $\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{i,j}^2}$

2.4 Symmetric, positive definite matrices

Symmetric matrix A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric $\iff A = A^T$

Symmetric matrix

Positive semidefinite matrix A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite iff

Positive semidefinite matrix

$$\forall \boldsymbol{x} \in \mathbb{R}^n \setminus \{0\} : \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \ge 0$$

Positive definite matrix A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite iff

Positive definite matrix

$$\forall \boldsymbol{x} \in \mathbb{R}^n \setminus \{0\} : \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} > 0$$

It has the following properties:

- 1. The null space of \boldsymbol{A} has the null vector only: $\operatorname{Ker}(\boldsymbol{A}) = \{\bar{\boldsymbol{0}}\}.$ Which implies that \boldsymbol{A} is non-singular (Theorem 2.1).
- 2. The diagonal elements of \boldsymbol{A} are all positive.

Theorem 2.2. If the eigenvalues of a symmetric matrix $B \in \mathbb{R}^{n \times n}$ are all positive. Then B is positive definite.

2.5 Orthogonality

Angle between vectors The angle ω between two vectors \boldsymbol{x} and \boldsymbol{y} can be obtained from:

Angle between vectors

$$\cos \omega = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\|_2 \cdot \|\boldsymbol{y}\|_2}$$

Orthogonal vectors Two vectors x and y are orthogonal $(x \perp y)$ when:

Orthogonal vectors

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$$

Orthonormal vectors Two vectors x and y are orthonormal when:

Orthonormal vectors

$$x \perp y \text{ and } ||x|| = ||y|| = 1$$

Theorem 2.3. The canonical basis of a vector space is orthonormal.

Orthogonal matrix A matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if its columns are <u>orthonormal</u> Orthogonal matrix vectors. It has the following properties:

- 1. $\mathbf{A}\mathbf{A}^T = \mathbf{I} = \mathbf{A}^T \mathbf{A}$, which implies $\mathbf{A}^{-1} = \mathbf{A}^T$.
- 2. The length of a vector is unchanged when mapped through an orthogonal matrix:

$$\|Ax\|^2 = \|x\|^2$$

3. The angle between two vectors is unchanged when both are mapped through an orthogonal matrix:

$$\cos \omega = \frac{(\boldsymbol{A}\boldsymbol{x})^T(\boldsymbol{A}\boldsymbol{y})}{\|\boldsymbol{A}\boldsymbol{x}\| \cdot \|\boldsymbol{A}\boldsymbol{y}\|} = \frac{\boldsymbol{x}^T\boldsymbol{y}}{\|\boldsymbol{x}\| \cdot \|\boldsymbol{y}\|}$$

Orthogonal basis Given an *n*-dimensional vector space V and a basis $\beta = \{b_1, \dots, b_n\}$ Orthogonal basis of V. β is an orthogonal basis if:

$$\boldsymbol{b}_i \perp \boldsymbol{b}_j$$
 for $i \neq j$ (i.e. $\langle \boldsymbol{b}_i, \boldsymbol{b}_j \rangle = 0$)

Orthonormal basis Given an *n*-dimensional vector space V and an orthogonal basis $\beta = 0$ rthonormal basis $\{b_1, \ldots, b_n\}$ of V. β is an orthonormal basis if:

$$\|\boldsymbol{b}_i\|_2 = 1 \text{ (or } \langle \boldsymbol{b}_i, \boldsymbol{b}_i \rangle = 1)$$

Orthogonal complement Given a n-dimensional vector space V and a m-dimensional orthogonal subspace $U \subseteq V$. The orthogonal complement U^{\perp} of U is a (n-m)-dimensional subspace of V such that it contains all the vectors orthogonal to every vector in U:

Orthogonal complement

$$\forall \boldsymbol{w} \in V : \boldsymbol{w} \in U^{\perp} \iff (\forall \boldsymbol{u} \in U : \boldsymbol{w} \perp \boldsymbol{u})$$

Note that $U \cap U^{\perp} = \{\bar{\mathbf{0}}\}\$ and it is possible to represent all vectors in V as a linear combination of both the basis of U and U^{\perp} .

The vector $\mathbf{w} \in U^{\perp}$ s.t. $\|\mathbf{w}\| = 1$ is the **normal vector** of U.

Normal vector

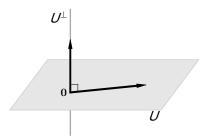


Figure 4: Orthogonal complement of a subspace $U \subseteq \mathbb{R}^3$

2.6 Projections

Projections are methods to map high-dimensional data into a lower-dimensional space while minimizing the compression loss.

Let V be a vector space and $U \subseteq V$ a subspace of V. A linear mapping $\pi : V \to U$ is a Orthogonal (orthogonal) projection if:

$$\pi^2 = \pi \circ \pi = \pi$$

In other words, applying π multiple times gives the same result (i.e. idempotency). π can be expressed as a transformation matrix P_{π} such that:

$$m{P}_{\pi}^2 = m{P}_{\pi}$$

2.6.1 Projection onto general subspaces

To project a vector $\boldsymbol{x} \in \mathbb{R}^n$ into a lower-dimensional subspace $U \subseteq \mathbb{R}^n$, it is possible to use the basis of U.

Let $m = \dim(U)$ be the dimension of U and $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_m) \in \mathbb{R}^{n \times m}$ an ordered basis of U. A projection $\pi_U(\mathbf{x})$ represents \mathbf{x} as a linear combination of the basis:

$$\pi_U(oldsymbol{x}) = \sum_{i=1}^m \lambda_i oldsymbol{b}_i = oldsymbol{B} oldsymbol{\lambda}$$

where $\lambda = (\lambda_1, \dots, \lambda_m)^T \in \mathbb{R}^m$ are the new coordinates of \boldsymbol{x} and is found by minimizing the distance between $\pi_U(\boldsymbol{x})$ and \boldsymbol{x} .

3 Linear systems

A linear system:

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m \end{cases}$$

can be represented as:

$$Ax = b$$

where:

$$\boldsymbol{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n} \qquad \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \qquad \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m$$

3.1 Square linear systems

A square linear system Ax = b with $A \in \mathbb{R}^{n \times n}$ and $x, b \in \mathbb{R}^n$ has an unique solution iff one—Square linear system of the following conditions is satisfied:

- 1. **A** is non-singular (invertible)
- 2. $rank(\mathbf{A}) = n$ (full rank)
- 3. Ax admits only the solution $x = \bar{0}$

The solution can be algebraically determined as

Algebraic solution to linear systems

$$Ax = b \iff x = A^{-1}b$$

However this approach requires to compute the inverse of a matrix, which has a time complexity of $O(n^3)$.

3.2 Direct methods

Direct methods compute the solution of a linear system in a finite number of steps. Compared Direct methods to iterative methods, they are more precise but more expensive.

The most common approach consists in factorizing the matrix A.

3.2.1 Gaussian factorization

Given a square linear system Ax = b, the matrix $A \in \mathbb{R}^{n \times n}$ is factorized into A = LU such Gaussian factorization (LU decomposition)

- $\boldsymbol{L} \in \mathbb{R}^{n \times n}$ is a lower triangular matrix
- $U \in \mathbb{R}^{n \times n}$ is an upper triangular matrix

As directly solving a system with a triangular matrix has complexity $O(n^2)$ (forward or backward substitutions), the system can be decomposed to:

$$Ax = b \iff LUx = b$$

$$\iff y = Ux \& Ly = b$$
(7)

To find the solution, it is sufficient to solve in order:

- 1. Ly = b (solved w.r.t. y)
- 2. y = Ux (solved w.r.t. x)

The overall complexity is $O(\frac{n^3}{3}) + 2 \cdot O(n^2) = O(\frac{n^3}{3})$

3.2.2 Gaussian factorization with pivoting

During the computation of $\mathbf{A} = \mathbf{L}\mathbf{U}$ (using Gaussian elimination¹), a division by 0 may occur. A method to prevent this problem (and to lower the algorithmic error) is to change the order of the rows of \mathbf{A} before decomposing it. This is achieved by using a permutation matrix \mathbf{P} , which is obtained as a permutation of the identity matrix.

Gaussian factorization with pivoting

The permuted system becomes PAx = Pb and the factorization is obtained as PA = LU. The system can be decomposed to:

$$PAx = Pb \iff LUx = Pb$$

$$\iff y = Ux \& Ly = Pb$$
(8)

An alternative formulation (which is what SciPy uses) is defined as:

$$A = PLU \iff P^TA = LU$$

It must be noted that P is orthogonal, so $P^T = P^{-1}$. The solution to the system $(P^T Ax = P^T b)$ can be found as above.

3.3 Iterative methods

Iterative methods solve a linear system by computing a sequence that converges to the exact solution. Compared to direct methods, they are less precise but computationally faster and more adapt for large systems.

Iterative methods

The overall idea is to build a sequence of vectors x_k that converges to the exact solution x^* :

$$\lim_{k \to \infty} \boldsymbol{x}_k = \boldsymbol{x}^*$$

Generally, the first vector \mathbf{x}_0 is given (or guessed). Subsequent vectors are computed w.r.t. the previous iteration as $\mathbf{x}_k = g(\mathbf{x}_{k-1})$.

The two most common families of iterative methods are:

¹https://en.wikipedia.org/wiki/LU_decomposition#Using_Gaussian_elimination

Stationary methods compute the sequence as:

Stationary methods

$$\boldsymbol{x}_k = \boldsymbol{B}\boldsymbol{x}_{k-1} + \boldsymbol{d}$$

where B is called iteration matrix and d is computed from the b vector of the system. The time complexity per iteration $O(n^2)$.

Gradient-like methods have the form:

Gradient-like methods

$$\boldsymbol{x}_k = \boldsymbol{x}_{k-1} + \alpha_{k-1} \boldsymbol{p}_{k-1}$$

where $\alpha_{k-1} \in \mathbb{R}$ and the vector \boldsymbol{p}_{k-1} is called direction.

Stopping criteria 3.3.1

One ore more stopping criteria are needed to determine when to truncate the sequence (as it Stopping criteria is theoretically infinite). The most common approaches are:

Residual based The algorithm is terminated when the current solution is close enough to the exact solution. The residual at iteration k is computed as $r_k = b - Ax_k$. Given a tolerance ε , the algorithm stops when:

- $\|\boldsymbol{r}_k\| \leq \varepsilon$
- $\frac{\|\boldsymbol{r}_k\|}{\|\boldsymbol{b}\|} \leq \varepsilon$

Update based The algorithm is terminated when the change between iterations is very small. Given a tolerance τ , the algorithm stops when:

$$\|\boldsymbol{x}_k - \boldsymbol{x}_{k-1}\| \le \tau$$

Obviously, as the sequence is truncated, a truncation error is introduced when using iterative methods.

Condition number 3.4

Inherent error causes inaccuracies during the resolution of a system. This problem is independent from the algorithm and is estimated using exact arithmetic.

Given a system Ax = b, we perturbate A and/or b and study the inherited error. For instance, if we perturbate b, we obtain the following system:

$$A\tilde{x} = (b + \Delta b)$$

After finding \tilde{x} , we can compute the inherited error as $\Delta x = \tilde{x} - x$.

By comparing $\left\|\frac{\Delta x}{x}\right\|$ and $\left\|\frac{\Delta b}{b}\right\|$, we can compute the error introduced by the perturbation. It can be shown that the distance is:

$$\left\| \frac{\Delta x}{x} \right\| \le \|A\| \cdot \|A^{-1}\| \cdot \left\| \frac{\Delta b}{b} \right\|$$

Finally, we can define the **condition number** of a matrix A as:

Condition number

$$K(\boldsymbol{A}) = \|\boldsymbol{A}\| \cdot \|\boldsymbol{A}^{-1}\|$$

A system is ill-conditioned if K(A) is large (i.e. small perturbation on the input causes large changes in the output). Otherwise it is well-conditioned.

Ill-conditioned Well-conditioned