mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Compare commits
2 Commits
d9deda7086
...
b307aa2786
| Author | SHA1 | Date | |
|---|---|---|---|
|
b307aa2786
|
|||
|
4b399a2ee9
|
@ -718,7 +718,7 @@
|
|||||||
\[ \vec{r}_i^k = \nabla l_i(\z_i^k) \]
|
\[ \vec{r}_i^k = \nabla l_i(\z_i^k) \]
|
||||||
Then, the estimate of the average signal (i.e., gradient) is given by:
|
Then, the estimate of the average signal (i.e., gradient) is given by:
|
||||||
\[
|
\[
|
||||||
\vec{s}_i^{k+1} = \sum_{j \in \mathcal{N}_i} a_{ij} \vec{s}_j^k + \left( \nabla l_i(\z_i^{k+1}) - \nabla l_i(\z_i^k) \right)
|
\vec{s}_i^{k+1} = \sum_{j \in \mathcal{N}_i} a_{ij} \vec{s}_j^k + \left( \nabla l_i(\z_i^{k+1}) - \nabla l_i(\z_i^k) \right) \qquad \s_i^0 = \nabla l_i(\z_i^0)
|
||||||
\]
|
\]
|
||||||
The update step is then performed as:
|
The update step is then performed as:
|
||||||
\[ \z_i^{k+1} = \sum_{j \in \mathcal{N}_i} a_{ij} \z_j^k - \alpha \vec{s}_i^k \]
|
\[ \z_i^{k+1} = \sum_{j \in \mathcal{N}_i} a_{ij} \z_j^k - \alpha \vec{s}_i^k \]
|
||||||
@ -748,9 +748,161 @@
|
|||||||
\,\,\land\,\,
|
\,\,\land\,\,
|
||||||
\rho \Vert \z_i^{k+1} - \z^* \Vert \leq \rho^k \Vert \z_i^0 - \z^* \Vert
|
\rho \Vert \z_i^{k+1} - \z^* \Vert \leq \rho^k \Vert \z_i^0 - \z^* \Vert
|
||||||
\]
|
\]
|
||||||
|
|
||||||
|
{
|
||||||
|
\indenttbox
|
||||||
|
\begin{remark}
|
||||||
|
It can be shown that gradient tracking also works with non-convex optimization and, under the correct assumptions, converges to a stationary point.
|
||||||
|
\end{remark}
|
||||||
|
}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Consider the gradient tracking algorithm written in matrix form:
|
||||||
|
\[
|
||||||
|
\begin{aligned}
|
||||||
|
\z^{k+1} &= \A \z^k - \alpha \s^k \\
|
||||||
|
\s^{k+1} &= \A \s^k + (\nabla \vec{l}(\z^{k+1}) - \nabla \vec{l}(\z^k))
|
||||||
|
\end{aligned}
|
||||||
|
\]
|
||||||
|
where $\nabla \vec{l}(\z^k) = \begin{bmatrix} l_1(\z^k_1) & \dots & l_N(\z^k_N) \end{bmatrix}$.
|
||||||
|
|
||||||
|
% \begin{remark}
|
||||||
|
% In the vector case, the Kronecker product should be applied on $\A$.
|
||||||
|
% \end{remark}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[Equilibrium]
|
||||||
|
We want to find the equilibrium points $(\z_\text{eq}, \s_\text{eq})$ that satisfies:
|
||||||
|
\[
|
||||||
|
\begin{aligned}
|
||||||
|
\s_\text{eq} &= \A \s_\text{eq} + \nabla \vec{l}(\z_\text{eq}) - \nabla \vec{l}(\z_\text{eq}) &\iff& (\matr{I} - \A) \s_\text{eq} = 0 \\
|
||||||
|
\z_\text{eq} &= \A\z_\text{eq} - \alpha \s_\text{eq} &\iff& (\matr{I} - \A) \z_\text{eq} = -\alpha \s_\text{eq} \\
|
||||||
|
\end{aligned}
|
||||||
|
\]
|
||||||
|
It must be that:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\s_\text{eq} \in \text{ker}(\matr{I} - \A) = \{ \vec{1}\beta_1 \mid \beta_1 \in \R \}$ (as $\A$ is doubly stochastic).
|
||||||
|
\item $(\matr{I} - \A) \z_\text{eq} = - \alpha \vec{1} \beta_1$. As $\vec{1} (-\alpha \beta_1) \in \text{ker}(\matr{I} - \A)$, it must be that $\beta_1 = 0$ (as the image cannot be mapped into the kernel).
|
||||||
|
\end{itemize}
|
||||||
|
Therefore, we end up with:
|
||||||
|
\[
|
||||||
|
\begin{split}
|
||||||
|
\s_\text{eq} &= \vec{1}\beta_1 = 0 \\
|
||||||
|
\z_\text{eq} &= \A\z_\text{eq} - \alpha 0 = \matr{1} \beta_2 \quad \text{ i.e., eigenvector of $\A$} \\
|
||||||
|
\end{split}
|
||||||
|
\]
|
||||||
|
|
||||||
|
In addition, by pre-multiplying the equation of $\s$ by $\vec{1}^T$, we obtain:
|
||||||
|
\[
|
||||||
|
\begin{split}
|
||||||
|
\vec{1}^T \s^{k+1} &= \vec{1}^T \A \s^k + \vec{1}^T \nabla \vec{l}(\z^{k+1}) - \vec{1}^T \nabla \vec{l}(\z^{k}) \\
|
||||||
|
&= \vec{1}^T \s^k + \vec{1}^T \nabla \vec{l}(\z^{k+1}) - \vec{1}^T \nabla \vec{l}(\z^{k})
|
||||||
|
\end{split}
|
||||||
|
\]
|
||||||
|
Which shows the following invariance condition:
|
||||||
|
\[
|
||||||
|
\begin{aligned}
|
||||||
|
\vec{1}^T \s^{k+1} - \vec{1}^T \nabla \vec{l}(\z^{k+1})
|
||||||
|
&= \vec{1}^T \s^k - \vec{1}^T \nabla \vec{l}(\z^{k}) \\
|
||||||
|
&= \vec{1}^T \s_\text{eq} - \vec{1}^T \nabla \vec{l}(\z_\text{eq}) \\
|
||||||
|
&= \vec{1}^T \s^0 - \vec{1}^T \nabla \vec{l}(\z^{0}) \\
|
||||||
|
\end{aligned}
|
||||||
|
\]
|
||||||
|
Thus, we have that:
|
||||||
|
\[
|
||||||
|
\begin{split}
|
||||||
|
\vec{1}^T \s_\text{eq} - \vec{1}^T \nabla \vec{l}(\z_\text{eq})
|
||||||
|
&= \vec{1}^T \s^0 - \vec{1}^T \nabla \vec{l}(\z^{0}) \\
|
||||||
|
\iff 0 - \vec{1}^T \nabla \vec{l}(\vec{1}\beta_2) &= 0 \\
|
||||||
|
\end{split}
|
||||||
|
\]
|
||||||
|
Then, it must be that $\z_\text{eq} = \vec{1}\beta_2$ is an optimum with $\beta_2 = z^*$.
|
||||||
|
|
||||||
|
\item[Stability]
|
||||||
|
% Change in coordinates to avoid having $\z^{k+1}$ in $\s^{k}$. The (non-linear) transformation is:
|
||||||
|
% \[
|
||||||
|
% \begin{bmatrix}
|
||||||
|
% \z^k \\ \s^k
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \mapsto
|
||||||
|
% \begin{bmatrix}
|
||||||
|
% \z^k \\ \vec{\xi}^k
|
||||||
|
% \end{bmatrix}
|
||||||
|
% =
|
||||||
|
% \begin{bmatrix}
|
||||||
|
% \z^k \\ \alpha (\nabla \vec{l}(\z^k) - \s^k)
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \]
|
||||||
|
|
||||||
|
% \[
|
||||||
|
% \begin{split}
|
||||||
|
% \z^{k+1}
|
||||||
|
% &= \A\z^k - \alpha ( \frac{1}{\alpha} \vec{\xi}^k + \nabla \vec{l}(\z^k) ) \\
|
||||||
|
% \vec{\xi}^k
|
||||||
|
% &= \alpha \nabla \vec{l}(\z^{k+1}) - \alpha (\A \s^k + \nabla \vec{l}(\z^{k+1}) - \nabla \vec{l} (\z^k)) \\
|
||||||
|
% &= - \alpha \A (-\frac{1}{\alpha} \xi^k + \nabla \vec{l}(\z^k)) + \alpha \nabla \vec{l}(\z^k) \\
|
||||||
|
% &= \A \vec{\xi}^k - \alpha(\A - \vec{I}) \nabla \vec{l}(\z^k)
|
||||||
|
% \end{split}
|
||||||
|
% \]
|
||||||
|
|
||||||
|
% In matrix form:
|
||||||
|
% \[
|
||||||
|
% \begin{bmatrix}
|
||||||
|
% \z^{k+1} \\ \vec{\xi}^{k+1} = \begin{bmatrix}
|
||||||
|
% \A & \matr{I} \\ 0 & \A
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \begin{bmatrix}
|
||||||
|
% \z^k \\ \vec{\xi}^k
|
||||||
|
% \end{bmatrix}
|
||||||
|
% - alpha \begin{bmatrix}
|
||||||
|
% \matr{I} \\ \A \matr{I}
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \nabla \vec{l}(\z^k)
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \]
|
||||||
|
% The initialization is:
|
||||||
|
% \[
|
||||||
|
% \begin{split}
|
||||||
|
% \z^0 \in \R^N \\
|
||||||
|
% \vec{\xi}^{0} = \alpha (\nabla \vec{l}(\z^0) - \s^0) = 0
|
||||||
|
% \end{split}
|
||||||
|
% \]
|
||||||
|
% The equilibrium has been shifted to:
|
||||||
|
% \[
|
||||||
|
% \begin{split}
|
||||||
|
% \z_\text{eq} = \vec{1} \z^* \\
|
||||||
|
% \vec{\xi}_\text{eq} = \alpha \nabla l(\vec{1} \z^*) = \alpha \begin{bmatrix}
|
||||||
|
% \nabla l_1(\z^*) \\ \vdots \\ \nabla l_N(\z^*)
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \end{split}
|
||||||
|
% \]
|
||||||
|
|
||||||
|
|
||||||
|
% \[
|
||||||
|
% \begin{gathered}
|
||||||
|
% \begin{bmatrix}
|
||||||
|
% \z^{k+1} \\ \vec{\xi}^{k+1} = \begin{bmatrix}
|
||||||
|
% \A & \matr{I} \\ 0 & \A
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \begin{bmatrix}
|
||||||
|
% \z^k \\ \vec{\xi}^k
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \begin{bmatrix}
|
||||||
|
% \matr{I} \\ \A \matr{I}
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \u^k
|
||||||
|
% \end{bmatrix} \\
|
||||||
|
% \vec{y}^k = \begin{bmatrix}
|
||||||
|
% \matr{I} & 0
|
||||||
|
% \end{bmatrix}
|
||||||
|
% \begin{bmatrix}
|
||||||
|
% \z^k \\ \vec{\xi}^{k}
|
||||||
|
% \end{bmatrix} \\
|
||||||
|
% -- \\
|
||||||
|
% \u^k = \nabla \vec{l}(\vec{y}^k)
|
||||||
|
% \end{gathered}
|
||||||
|
% \]
|
||||||
|
\end{description}
|
||||||
|
\end{proof}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\end{description}
|
\end{description}
|
||||||
|
|
||||||
\begin{remark}
|
|
||||||
It can be shown that gradient tracking also works with non-convex optimization and, under the correct assumptions, converges to a stationary point.
|
|
||||||
\end{remark}
|
|
||||||
@ -8,9 +8,11 @@
|
|||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
\makenotesfront
|
\makenotesfront
|
||||||
\include{./sections/_gdpr.tex}
|
\input{./sections/_gdpr.tex}
|
||||||
\include{./sections/_claudette.tex}
|
\input{./sections/_claudette.tex}
|
||||||
\include{./sections/_discrimination.tex}
|
\input{./sections/_discrimination.tex}
|
||||||
\include{./sections/_autonomous_vehicles.tex}
|
\input{./sections/_autonomous_vehicles.tex}
|
||||||
|
\input{./sections/_ai_act.tex}
|
||||||
|
\eoc
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
343
src/year2/ethics-in-ai/module2/sections/_ai_act.tex
Normal file
343
src/year2/ethics-in-ai/module2/sections/_ai_act.tex
Normal file
@ -0,0 +1,343 @@
|
|||||||
|
\chapter{AI Act}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{General principles}
|
||||||
|
\marginnote{General principles}
|
||||||
|
|
||||||
|
Regulate the development of AI systems based on the principles of:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Human agency and oversight,
|
||||||
|
\item Technical robustness and safety,
|
||||||
|
\item Privacy and data governance,
|
||||||
|
\item Transparency,
|
||||||
|
\item Diversity, non-discrimination, and fairness,
|
||||||
|
\item Social and environmental well-being.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Definitions}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[AI system] \marginnote{AI system}
|
||||||
|
Machine-based system that is designed to operate with varying levels of autonomy and adaptability. Moreover, its output is inferred from the input data.
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
Rule-based systems are excluded.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\item[General purpose AI] \marginnote{General purpose AI}
|
||||||
|
AI system that exhibits significant generality and is able to perform a wide range of tasks.
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Scope}
|
||||||
|
|
||||||
|
The AI Act applies to:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Providers who put an AI system on the EU's market, independently of their location.
|
||||||
|
\item Deployers of AI systems located within the EU.
|
||||||
|
\item Providers and deployers in third countries if the output produced is used in the EU.
|
||||||
|
\item Importers and distributors of AI systems.
|
||||||
|
\item Product manufacturers who use AI systems in their products.
|
||||||
|
\item Authorized representatives of providers.
|
||||||
|
\item People affected by AI systems in the EU.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
The AI Act is excluded for the following areas:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Military, defense, and national security,
|
||||||
|
\item Scientific research and development activities,
|
||||||
|
\item Pre-market development and testing, if done in protected environments,
|
||||||
|
\item International law enforcement cooperation, if fundamental rights safeguards are in place.
|
||||||
|
\end{itemize}
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
The AI Act is a compromise between a product safety approach (e.g., minimum safety requirements, standards, \dots) and a fundamental rights approach.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
The AI Act does not introduce new individual rights.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\section{Risk regulation}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[Risk]
|
||||||
|
Combination of the probability of harm and the severity of that harm.
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Risk levels}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[Unacceptable-risk (article 5)] \marginnote{Unacceptable-risk}
|
||||||
|
Includes AI systems that are used for:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Deploying harmful and manipulative subliminal techniques (i.e., beyond individual cognition),
|
||||||
|
\item Exploiting vulnerable groups,
|
||||||
|
\item Social scoring,
|
||||||
|
\item Real-time remote biometric identification in public spaces for law enforcement purposes (with some exceptions),
|
||||||
|
\item Biometric categorization of protected features,
|
||||||
|
\item Predicting criminal offenses solely based on profiling or personality traits,
|
||||||
|
\item Creating facial recognition databases by scraping the Internet or CCTV footage,
|
||||||
|
\item Inferring emotions in workplaces or educational institutions, unless for medical or safety reasons.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\item[High-risk (article 6)] \marginnote{High-risk}
|
||||||
|
Includes the following groups of AI systems:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Those used as safety components of a product or falling under the EU health and safety legislation (e.g., toys, aviation, cars, medical devices, \dots)
|
||||||
|
\item Those used in the following specific areas: biometric identification, critical infrastructures, education, employment, access to essential services, law enforcement, migration, and juridical and democratic processes.
|
||||||
|
\item Those that performs profiling of natural persons.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Requirements to assess the impact of a these systems are:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Determining the categories of natural persons and groups affected by the system,
|
||||||
|
\item Checking compliance with European and national laws,
|
||||||
|
\item Fundamental rights risk assessment (FRIA),
|
||||||
|
\begin{example}[FRAIA]
|
||||||
|
Questionnaire created by the Dutch government to assess the impact of AI systems on fundamental rights.
|
||||||
|
\end{example}
|
||||||
|
\item Determining the risk of harm towards vulnerable groups and the environmental impact,
|
||||||
|
\item Determining a plan for risk mitigation,
|
||||||
|
\item Creating a governance system for human oversight, complaint handling, and redress.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
These requirements are still under research.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\item[Limited-risk (article 52)] \marginnote{Limited-risk}
|
||||||
|
Involves AI systems that interact with users with limited effects. It includes chatbots, emotion recognition, deep fakes, \dots
|
||||||
|
|
||||||
|
Requirements are:
|
||||||
|
\begin{itemize}
|
||||||
|
\item The user must be informed that it is interacting with an AI system,
|
||||||
|
\item Artificial content must be labeled as generated and contain detectable watermarks,
|
||||||
|
\item Employers must inform workers on whether AI is used in the workplace and the reasons.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\item[Minimal-risk (article 69)] \marginnote{Minimal-risk}
|
||||||
|
Involves AI systems with low to no effects on the user. It includes spam filters, video games, purchase recommendation systems, \dots.
|
||||||
|
|
||||||
|
They are required to comply with the existing regulation but are not further regulated by the AI Act.
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
Providers of these systems are nonetheless encouraged to voluntarily respect high-risk requirements.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\item[General purpose AI requirements] \marginnote{General purpose AI requirements}
|
||||||
|
Specific requirements for general purpose AI are:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Technical documentation must be kept for training, testing, and performance,
|
||||||
|
\item Key information must be shared with downstream AI system providers,
|
||||||
|
\item A summary of the training data must be published,
|
||||||
|
\item Copyright compliance must be declared,
|
||||||
|
\item Collaboration with regulators,
|
||||||
|
\item Codes of practice should be provided.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
There is a subgroup of general purpose AI systems that includes those that pose a systemic risk. Additional requirements for these systems are:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Additional risk mitigation,
|
||||||
|
\item Independent system evaluation and model registration.
|
||||||
|
\end{itemize}
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
If the computing power to train a model exceeds a certain threshold, that system is presumed to be a general purpose AI that poses systemic risks.
|
||||||
|
\end{remark}
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Enforcement}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[Enforcement] \marginnote{Enforcement}
|
||||||
|
National supervisory authority enforces the AI Act in each member state with the support of the European Artificial Intelligence Office.
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{AI regulatory sandboxes}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[AI sandbox] \marginnote{AI sandbox}
|
||||||
|
Voluntary framework organized by member states for small to medium companies to test AI systems in controlled environments.
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\section{AI liability}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
In the case of AI systems, liability has to account for:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Black-box models,
|
||||||
|
\item Autonomous and unpredictable models,
|
||||||
|
\item Multiple actors and diffused responsibility,
|
||||||
|
\item Lack of a clear legal framework,
|
||||||
|
\item Difficulty in finding the causal chain.
|
||||||
|
\end{itemize}
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Liability theories}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[Strict liability] \marginnote{Strict liability}
|
||||||
|
The producer is always responsible for their product both if it is their fault or due to negligence. The injured party only has to prove that damage occurred.
|
||||||
|
|
||||||
|
\item[Fault liability] \marginnote{Fault liability}
|
||||||
|
The defender has to show that someone is responsible for causing damage intentionally or negligently.
|
||||||
|
|
||||||
|
\item[Mandatory insurance] \marginnote{Mandatory insurance}
|
||||||
|
Enforce that the product (e.g., AI system) is covered by an insurance.
|
||||||
|
|
||||||
|
\item[Compensation funds] \marginnote{Compensation funds}
|
||||||
|
Economic relief for the users in case of damage or bankruptcy of the company.
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Revised Product Liability Directive}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[Revised Product Liability Directive] \marginnote{Revised Product Liability Directive}
|
||||||
|
Product Liability Directive extended to software and AI systems. It is applied in all member states (i.e., maximum harmonization) and is based on the strict liability theory.
|
||||||
|
|
||||||
|
The requirements to prove for compensation are that:
|
||||||
|
\begin{itemize}
|
||||||
|
\item The product is defective,
|
||||||
|
\item Damage was caused,
|
||||||
|
\item There is a causal link between defect and damage.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\item[Product] \marginnote{Product}
|
||||||
|
The revised Product Liability Directive extends the definition of product with:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Software and its updates,
|
||||||
|
\item Digital manufacturing files (e.g., model for 3D printers),
|
||||||
|
\item Digital services.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
Free and non-commercial open-source software are excluded
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\item[Liable parties (article 8)] \marginnote{Liable parties}
|
||||||
|
The revised Product Liability Directive extends liable entities with:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Any economic operator that has substantially modified the product outside the control of the manufacturer,
|
||||||
|
\item Distributors of defective products,
|
||||||
|
\item Online platforms.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
In the case of AI systems, the producer is the provider defined in the AI Act.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\item[Types of damage (article 6)] \marginnote{Types of damage}
|
||||||
|
Compensation can be provided for:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Death or personal injury, including psychological health.
|
||||||
|
\item Damage or destruction of properties, with the exception of the product itself, other components the defective product is integrated with, and products used for professional purposes only.
|
||||||
|
\item Destruction or corruption of data that is not used for professional purposes.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\item[Defectiveness (article 7)] \marginnote{Defectiveness}
|
||||||
|
In the case of software, liability is applied also for defects that come out after the product has been put in the market. This includes:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Software updates under the manufacturer's control,
|
||||||
|
\item Failure to address cybersecurity vulnerabilities,
|
||||||
|
\item Machine learning.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\item[Presumption of defectiveness and causality (article 10)] \marginnote{Presumption of defectiveness and causality}
|
||||||
|
Defectiveness is presumed when:
|
||||||
|
\begin{itemize}
|
||||||
|
\item The manufacturer fails to comply with the obligation to disclose information,
|
||||||
|
\item A product does not comply with mandatory safety requirements,
|
||||||
|
\item Damage is caused by an obvious product malfunction.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
A causal link is presumed when:
|
||||||
|
\begin{itemize}
|
||||||
|
\item The damage is consistent with the type of defect,
|
||||||
|
\item The technical or scientific complexity makes it difficult to prove liability (e.g., as with black-box models).
|
||||||
|
\end{itemize}
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
The revised Product Liability Directive does not cover:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Discrimination,
|
||||||
|
\item Violation of privacy (that are not already covered in the GDPR),
|
||||||
|
\item Use of AI for professional purposes,
|
||||||
|
\item Sustainability effects.
|
||||||
|
\end{itemize}
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{AI Liability Directive}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[AI Liability Directive] \marginnote{AI Liability Directive}
|
||||||
|
Additional protection for cases not covered in the revised Product Liability Directive. It is based on the fault liability theory.
|
||||||
|
|
||||||
|
The directive has been cancelled by the EU Commission.
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{example}[Case study: delivery robot accident]
|
||||||
|
An autonomous delivery robot that is able to navigate the pavement of pedestrian areas falls on the edge and hits a bicycle courier on the cycle lane. Both the biker and the robot sustained injuries/damage.
|
||||||
|
|
||||||
|
\begin{descriptionlist}
|
||||||
|
\item[AI Act] The system falls under the high-risk level (autonomous vehicle).
|
||||||
|
\item[Revised Product Liability Directive] \phantom{}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Liability can be sought after the company deploying the robots or the one renting them.
|
||||||
|
\item The defect is related to the sensors/decision-making of the robot.
|
||||||
|
\item Injuries are both physical and possibly psychological.
|
||||||
|
\end{itemize}
|
||||||
|
\end{descriptionlist}
|
||||||
|
\end{example}
|
||||||
|
|
||||||
|
\begin{example}[Case study: smart bank]
|
||||||
|
A bank stores its data in the storage service provided by another company. An update released by the bank causes the corruption and loss of financial data.
|
||||||
|
|
||||||
|
An affected customer failed to make payments leading to penalties and decrease in credit score.
|
||||||
|
|
||||||
|
\begin{descriptionlist}
|
||||||
|
\item[AI Act] The system does not involve AI.
|
||||||
|
\item[Revised Product Liability Directive] \phantom{}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Liability can be sought after the bank.
|
||||||
|
\item The defect is the loss of records due to the update.
|
||||||
|
\item Damages are psychological and economical.
|
||||||
|
\end{itemize}
|
||||||
|
\end{descriptionlist}
|
||||||
|
\end{example}
|
||||||
|
|
||||||
|
\begin{example}[Case study: AI friend]
|
||||||
|
A mental health chatbot is developed to support young users. However, a flaw in the system causes the generation of inappropriate and harmful messages.
|
||||||
|
|
||||||
|
In an affected user, this lead to depression, self-harm, declining school performance, and withdrawal from social activities.
|
||||||
|
|
||||||
|
\begin{descriptionlist}
|
||||||
|
\item[AI Act] The system might fall under the unacceptable-risk level (manipulation) or under the high-risk level (medical diagnosis).
|
||||||
|
\item[Revised Product Liability Directive] \phantom{}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Liability can be sought after the company deploying the system.
|
||||||
|
\item The defect is the flaw of the chatbot.
|
||||||
|
\item Damage is psychological and physical. It also involves the loss of opportunities.
|
||||||
|
\end{itemize}
|
||||||
|
\end{descriptionlist}
|
||||||
|
\end{example}
|
||||||
Reference in New Issue
Block a user