mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Rearranged sections
This commit is contained in:
@ -586,13 +586,13 @@
|
||||
\end{figure}
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Optimization algorithms}
|
||||
|
||||
\begin{remark}
|
||||
Using as direction the sum of the gradients of all agents is not possible as not everyone can communicate with everyone.
|
||||
\end{remark}
|
||||
|
||||
|
||||
\subsection{Distributed gradient algorithm}
|
||||
|
||||
\begin{description}
|
||||
\item[Distributed gradient algorithm] \marginnote{Distributed gradient algorithm}
|
||||
Method that estimates a (more precise) set of parameters as a weighted sum those of its neighbors' (self-loop included):
|
||||
@ -606,6 +606,7 @@
|
||||
&= \left(\sum_{j \in \mathcal{N}_i} a_{ij} \z_j^k\right) - \alpha^k \nabla l_i\left(\sum_{j \in \mathcal{N}_i} a_{ij} \z_j^k\right)
|
||||
\end{split}
|
||||
\]
|
||||
\end{description}
|
||||
|
||||
\begin{theorem}[Distributed gradient algorithm convergence] \marginnote{Distributed gradient algorithm convergence}
|
||||
Assume that:
|
||||
@ -618,6 +619,8 @@
|
||||
\[ \lim_{k \rightarrow \infty} \Vert \z_i^k - \z^* \Vert = 0 \]
|
||||
\end{theorem}
|
||||
|
||||
|
||||
\begin{description}
|
||||
\item[Distributed projected subgradient algorithm] \marginnote{Distributed projected subgradient algorithm}
|
||||
Distributed gradient algorithm extended to the case where $l_i$ are non-smooth convex functions and $\z$ is constrained to a closed convex set $Z \subseteq \mathbb{R}^d$. The distributed step is the following:
|
||||
\[
|
||||
@ -627,6 +630,7 @@
|
||||
\end{split}
|
||||
\]
|
||||
where $P_Z(\cdot)$ is the Euclidean projection onto $Z$ and $\tilde{\nabla} l_i$ is a subgradient of $l_i$.
|
||||
\end{description}
|
||||
|
||||
\begin{theorem}[Distributed projected subgradient algorithm convergence] \marginnote{Distributed projected subgradient algorithm convergence}
|
||||
Assume that:
|
||||
@ -637,9 +641,10 @@
|
||||
\end{itemize}
|
||||
Then, each agent converges to an optimal solution $\z^*$.
|
||||
\end{theorem}
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Gradient tracking algorithm}
|
||||
|
||||
\begin{theorem}
|
||||
The distributed gradient algorithm does not converge with a constant step size.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user