mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-15 19:12:22 +01:00
Add IPCV2 warping and classification
This commit is contained in:
@ -0,0 +1,105 @@
|
||||
\chapter{Image classification}
|
||||
|
||||
|
||||
\section{Supervised datasets}
|
||||
|
||||
\begin{description}
|
||||
\item[Dataset] \marginnote{Dataset}
|
||||
Given a set of labeled data, it can be split into:
|
||||
\begin{descriptionlist}
|
||||
\item[Train set] $D^\text{train} = \{ (\text{x}_\text{train}^{(i)}, y_\text{train}^{(i)}) \mid i = 1, \dots, N \}$.
|
||||
\item[Test set] $D^\text{test} = \{ (\text{x}_\text{test}^{(i)}, y_\text{test}^{(i)}) \mid i = 1, \dots, M \}$.
|
||||
\end{descriptionlist}
|
||||
|
||||
It is assumed that the two sets contain i.i.d. samples drawn from the same unknown distribution.
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Modified NIST (MNIST)}
|
||||
|
||||
\begin{minipage}{0.45\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=0.9\linewidth]{./img/mnist.png}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{descriptionlist}
|
||||
\item[Content] Handwritten digits from 0 to 9.
|
||||
\item[Number of classes] 10.
|
||||
\item[Train set size] 50k.
|
||||
\item[Test set size] 10k.
|
||||
\item[Image format] $28 \times 28$ grayscale.
|
||||
\end{descriptionlist}
|
||||
\end{minipage}
|
||||
|
||||
|
||||
\subsection{CIFAR10}
|
||||
|
||||
\begin{minipage}{0.45\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=0.9\linewidth]{./img/cifar10.png}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{descriptionlist}
|
||||
\item[Content] Objects of various categories.
|
||||
\item[Number of classes] 10.
|
||||
\item[Train set size] 50k.
|
||||
\item[Test set size] 10k.
|
||||
\item[Image size] $32 \times 32$ RGB.
|
||||
\end{descriptionlist}
|
||||
\end{minipage}
|
||||
|
||||
|
||||
\subsection{CIFAR100}
|
||||
|
||||
\begin{minipage}{0.45\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=0.7\linewidth]{./img/cifar100.png}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{descriptionlist}
|
||||
\item[Content] Objects of various categories.
|
||||
\item[Number of classes] 100 (20 super-classed with 5 sub-classes).
|
||||
\item[Train set size] 50k.
|
||||
\item[Test set size] 10k.
|
||||
\item[Image size] $32 \times 32$ RGB.
|
||||
\end{descriptionlist}
|
||||
\end{minipage}
|
||||
|
||||
|
||||
\subsection{ImageNet 21k}
|
||||
|
||||
\begin{descriptionlist}
|
||||
\item[Content] Objects of various categories.
|
||||
\item[Number of classes] 21k synsets from WordNet organized hierarchically.
|
||||
\item[Dataset size] 14 millions.
|
||||
\item[Image size] Variable resolution RGB. Average size of $400 \times 350$.
|
||||
\end{descriptionlist}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.85\linewidth]{./img/imagenet21k.png}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{ImageNet 1k}
|
||||
|
||||
\begin{minipage}{0.45\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/imagenet1k.png}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{descriptionlist}
|
||||
\item[Content] Objects of various categories.
|
||||
\item[Number of classes] 1000.
|
||||
\item[Train set size] $1.3$ millions.
|
||||
\item[Validation set size] 50k.
|
||||
\item[Test set size] 100k.
|
||||
\item[Image size] Variable resolution RGB. Often resized to $256 \times 256$.
|
||||
\end{descriptionlist}
|
||||
\end{minipage}
|
||||
|
||||
\begin{remark}
|
||||
Performance is usually measured as top-5 accuracy as making a single prediction might be ambiguous due to the fact that the images can contain multiple objects.
|
||||
\end{remark}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user