mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Fix typos <noupdate>
This commit is contained in:
@ -97,7 +97,7 @@
|
||||
it is possible to estimate \\$\texttt{Intelligence}$.
|
||||
|
||||
Note that if $\texttt{Grade}$ was not known,
|
||||
$\texttt{Difficulty}$ and $\texttt{Intelligence}$ would be independent.
|
||||
$\texttt{Difficulty}$ and $\texttt{Intelligence}$ would have been independent.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.75\linewidth]{img/_explainaway_example.pdf}
|
||||
\end{center}
|
||||
@ -431,7 +431,7 @@ A node $X$ has $k$ parents $U_1, \dots, U_k$ and possibly a leak node $U_L$ to c
|
||||
|
||||
Each node $U_i$ has a failure (inhibition) probability $q_i$:
|
||||
\[ q_i = \prob{\lnot x \mid u_i, \lnot u_j \text{ for } j \neq i} \]
|
||||
The CRT can be built by computing the probabilities as:
|
||||
The CPT can be built by computing the probabilities as:
|
||||
\[ \prob{\lnot x \mid \texttt{Parents($X$)}} = \prod_{j:\, U_j = \texttt{true}} q_j \]
|
||||
In other words:
|
||||
\[ \prob{\lnot x \mid u_1, \dots, u_n} =
|
||||
@ -451,7 +451,7 @@ Because only the failure probabilities are required, the number of parameters is
|
||||
\end{split}
|
||||
\]
|
||||
|
||||
Known the failure probabilities, the entire CRT can be computed:
|
||||
Known the failure probabilities, the entire CPT can be computed:
|
||||
\begin{center}
|
||||
\begin{tabular}{c|c|c|rc|c}
|
||||
\hline
|
||||
@ -543,7 +543,7 @@ Possible approaches are:
|
||||
\end{figure}
|
||||
|
||||
\item[Density estimation] \marginnote{Density estimation}
|
||||
Parameters of the conditional distribution are learnt:
|
||||
Parameters of the conditional distribution can be learned using:
|
||||
\begin{description}
|
||||
\item[Bayesian learning] calculate the probability of each hypothesis.
|
||||
\item[Approximations] using the maximum-a-posteriori and maximum-likelihood hypothesis.
|
||||
|
||||
@ -93,7 +93,7 @@ A variable $X$ is irrelevant if summing over it results in a probability of $1$.
|
||||
|
||||
\begin{theorem}
|
||||
Given a query $X$, the evidence $\matr{E}$ and a variable $Y$:
|
||||
\[ Y \notin \texttt{Ancestors($\{ X \}$)} \cup \texttt{Ancestors($\matr{E}$)} \rightarrow Y \text{ is irrelevant} \]
|
||||
\[ Y \notin (\texttt{Ancestors($\{ X \}$)} \cup \texttt{Ancestors($\matr{E}$)}) \rightarrow Y \text{ is irrelevant} \]
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem}
|
||||
|
||||
@ -4,11 +4,11 @@
|
||||
\section{Uncertainty}
|
||||
\begin{description}
|
||||
\item[Uncertainty] \marginnote{Uncertainty}
|
||||
A task is uncertain if we have:
|
||||
A task is uncertain if it has:
|
||||
\begin{itemize}
|
||||
\item Partial observations
|
||||
\item Noisy or wrong information
|
||||
\item Uncertain action outcomes
|
||||
\item Uncertain outcomes of the actions
|
||||
\item Complex models
|
||||
\end{itemize}
|
||||
|
||||
|
||||
@ -23,7 +23,7 @@
|
||||
|
||||
\item[Probability distribution] \marginnote{Probability distribution}
|
||||
For any random variable $X$:
|
||||
\[ \prob{X = x_i} = \sum_{\omega \text{ st } X(\omega)=x_i} \prob{\omega} \]
|
||||
\[ \prob{X = x_i} = \sum_{\omega \text{ s.t. } X(\omega)=x_i} \prob{\omega} \]
|
||||
|
||||
\item[Proposition] \marginnote{Proposition}
|
||||
Event where a random variable has a certain value.
|
||||
|
||||
Reference in New Issue
Block a user