mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-18 04:11:47 +01:00
Moved DL in year1
This commit is contained in:
72
src/year1/deep-learning/sections/_expressivity.tex
Normal file
72
src/year1/deep-learning/sections/_expressivity.tex
Normal file
@ -0,0 +1,72 @@
|
||||
\chapter{Neural networks expressivity}
|
||||
|
||||
|
||||
|
||||
\section{Perceptron}
|
||||
|
||||
Single neuron that defines a binary threshold through a hyperplane:
|
||||
\[
|
||||
\begin{cases}
|
||||
1 & \sum_{i} w_i x_i + b \geq 0 \\
|
||||
0 & \text{otherwise}
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
\begin{description}
|
||||
\item[Expressivity] \marginnote{Perceptron expressivity}
|
||||
A perceptron can represent a NAND gate but not a XOR gate.
|
||||
\begin{center}
|
||||
\begin{minipage}{.2\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/_perceptron_nand.pdf}
|
||||
\tiny NAND
|
||||
\end{minipage}
|
||||
\begin{minipage}{.2\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/_xor.pdf}
|
||||
\tiny XOR
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
|
||||
\begin{remark}
|
||||
Even if NAND is logically complete, the strict definition of a perceptron is not a composition of them.
|
||||
\end{remark}
|
||||
\end{description}
|
||||
|
||||
|
||||
|
||||
\section{Multi-layer perceptron}
|
||||
|
||||
Composition of perceptrons.
|
||||
|
||||
\begin{descriptionlist}
|
||||
\item[Shallow neural network] \marginnote{Shallow NN}
|
||||
Neural network with one hidden layer.
|
||||
|
||||
\item[Deep neural network] \marginnote{Deep NN}
|
||||
Neural network with more than one hidden layer.
|
||||
\end{descriptionlist}
|
||||
|
||||
\begin{description}
|
||||
\item[Expressivity] \marginnote{Multi-layer perceptron expressivity}
|
||||
Shallow neural networks allow to approximate any continuous function
|
||||
\[ f: \mathbb{R} \rightarrow [0, 1] \]
|
||||
|
||||
\begin{remark}
|
||||
Still, deep neural networks allow to use less neural units.
|
||||
\end{remark}
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Parameters}
|
||||
|
||||
The number of parameters of a layer is given by:
|
||||
\[ S_\text{in} \cdot S_\text{out} + S_\text{out} \]
|
||||
where:
|
||||
\begin{itemize}
|
||||
\item $S_\text{in}$ is the dimension of the input of the layer.
|
||||
\item $S_\text{out}$ is the dimension of the output of the layer.
|
||||
\end{itemize}
|
||||
|
||||
Therefore, the number of FLOPS is of order:
|
||||
\[ S_\text{in} \cdot S_\text{out} \]
|
||||
Reference in New Issue
Block a user