diff --git a/src/statistical-and-mathematical-methods-for-ai/sections/_finite_numbers.tex b/src/statistical-and-mathematical-methods-for-ai/sections/_finite_numbers.tex index 105c13f..2ae547f 100644 --- a/src/statistical-and-mathematical-methods-for-ai/sections/_finite_numbers.tex +++ b/src/statistical-and-mathematical-methods-for-ai/sections/_finite_numbers.tex @@ -48,9 +48,10 @@ Let $x$ be a value and $\hat{x}$ its approximation. Then: Let $\beta \in \mathbb{N}_{> 1}$ be the base. Each $x \in \mathbb{R} \smallsetminus \{0\}$ can be uniquely represented as: -\[ \label{eq:finnum_b_representation} +\begin{equation} + \label{eq:finnum_b_representation} x = \texttt{sign}(x) \cdot (d_1\beta^{-1} + d_2\beta^{-2} + \dots + d_n\beta^{-n})\beta^p -\] +\end{equation} where: \begin{itemize} \item $0 \leq d_i \leq \beta-1$