mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-16 11:31:49 +01:00
Fix typos <noupdate>
This commit is contained in:
@ -44,7 +44,7 @@
|
||||
\item[Goal] \marginnote{Goal}
|
||||
$G := \top \mid \bot \mid A \mid C \mid G_1 \land G_2$
|
||||
\item[Constraint logic clause] \marginnote{Constraint logic clause}
|
||||
$K := A \leftarrow G$
|
||||
$K := A \Leftarrow G$
|
||||
\item[Constraint logic program] \marginnote{Constraint logic program}
|
||||
$P := K_1 \dots K_m$, for $m \geq 0$
|
||||
\end{description}
|
||||
@ -67,17 +67,17 @@
|
||||
Starting from the state $\langle A \land G, C \rangle$ of a program $P$, a transition on the atom $A$ can result in:
|
||||
\begin{description}
|
||||
\item[Unfold] \marginnote{Unfold}
|
||||
If there exists a clause $(B \leftarrow H)$ in $P$ and
|
||||
If there exists a clause $(B \Leftarrow H)$ in $P$ and
|
||||
an assignment $(B \doteq A)$ such that $((B \doteq A) \land C)$ is still valid,
|
||||
then we have a transition $\langle A \land G, C \rangle \mapsto \langle H \land G, (B \doteq A) \land C \rangle$.
|
||||
|
||||
In other words, we want to develop an atom $A$ and the current constraints are denoted as $C$.
|
||||
We look for a clause whose head equals $A$, applying an assignment if needed.
|
||||
If this is possible, we transit from solving $A$ to solving the body of the clause and
|
||||
If this is possible, we transition from solving $A$ to solving the body of the clause and
|
||||
add the assignment to the set of active constraints.
|
||||
|
||||
\item[Failure] \marginnote{Failure}
|
||||
If there are no clauses $(B \leftarrow H)$ with a valid assignment $((B \doteq A) \land C)$,
|
||||
If there are no clauses $(B \Leftarrow H)$ with a valid assignment $((B \doteq A) \land C)$,
|
||||
then we have a transition $\langle A \land G, C \rangle \mapsto \langle \bot, \bot \rangle$.
|
||||
\end{description}
|
||||
|
||||
@ -100,7 +100,7 @@
|
||||
\begin{description}
|
||||
\item[Generate-and-test] \marginnote{Generate-and-test}
|
||||
Strategy adopted by logic programs.
|
||||
Every possible assignment to the variables are generated and tested.
|
||||
Every possible assignment to the variables is generated and tested.
|
||||
|
||||
The workflow is the following:
|
||||
\begin{enumerate}
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
\chapter{First order logic}
|
||||
\chapter{First-order logic}
|
||||
|
||||
|
||||
\section{Syntax}
|
||||
@ -12,12 +12,12 @@ The symbols of propositional logic are:
|
||||
Unknown elements of the domain. Do not represent truth values.
|
||||
|
||||
\item[Function symbols]
|
||||
Function $f^{(n)}$ applied on $n$ constants to obtain another constant.
|
||||
Function $f^{(n)}$ applied on $n$ elements of the domain to obtain another element of the domain.
|
||||
|
||||
\item[Predicate symbols]
|
||||
Function $P^{(n)}$ applied on $n$ constants to obtain a truth value.
|
||||
Function $P^{(n)}$ applied on $n$ elements of the domain to obtain a truth value.
|
||||
|
||||
\item[Connectives] $\forall$ $\exists$ $\land$ $\vee$ $\rightarrow$ $\lnot$ $\leftrightarrow$ $\top$ $\bot$ $($ $)$
|
||||
\item[Connectives] $\forall$ $\exists$ $\land$ $\vee$ $\Rightarrow$ $\lnot$ $\Leftrightarrow$ $\top$ $\bot$ $($ $)$
|
||||
\end{descriptionlist}
|
||||
|
||||
Using the basic syntax, the following constructs can be defined:
|
||||
@ -27,7 +27,7 @@ Using the basic syntax, the following constructs can be defined:
|
||||
|
||||
\item[Proposition] Denotes truth values.
|
||||
\[
|
||||
P := \top \,|\, \bot \,|\, P \land P \,|\, P \vee P \,|\, P \rightarrow P \,|\, P \leftrightarrow P \,|\,
|
||||
P := \top \,|\, \bot \,|\, P \land P \,|\, P \vee P \,|\, P \Rightarrow P \,|\, P \Leftrightarrow P \,|\,
|
||||
\lnot P \,|\, \forall x. P \,|\, \exists x. P \,|\, (P) \,|\, P^{(n)}(t_1, \dots, t_n)
|
||||
\]
|
||||
\end{descriptionlist}
|
||||
@ -35,7 +35,7 @@ Using the basic syntax, the following constructs can be defined:
|
||||
|
||||
\begin{description}
|
||||
\item[Well-formed formula] \marginnote{Well-formed formula}
|
||||
The definition of well-formed formula in first order logic extends the one of
|
||||
The definition of well-formed formula in first-order logic extends the one of
|
||||
propositional logic by adding the following conditions:
|
||||
\begin{itemize}
|
||||
\item If S is well-formed, $\exists X. S$ is well-formed. Where $X$ is a variable.
|
||||
@ -44,13 +44,13 @@ Using the basic syntax, the following constructs can be defined:
|
||||
|
||||
\item[Free variables] \marginnote{Free variables}
|
||||
The universal and existential quantifiers bind their variable within the scope of the formula.
|
||||
Let $F_v(F)$ be the set of free variables in a formula $F$, $F_v$ is defined as follows:
|
||||
Let $\mathcal{F}_v(F)$ be the set of free variables in a formula $F$, $\mathcal{F}_v$ is defined as follows:
|
||||
\begin{itemize}
|
||||
\item $F_v(p(t)) = \bigcup \texttt{vars}(t)$
|
||||
\item $F_v(\top) = F_v(\bot) = \varnothing$
|
||||
\item $F_v(\lnot F) = F_v(F)$
|
||||
\item $F_v(F_1 \land F_2) = F_v(F_1 \vee F_2) = F_v(F_1 \rightarrow F_2) = F_v(F_1) \cup F_v(F_2)$
|
||||
\item $F_v(\forall X.F) = F_v(\exists X.F) = F_v(F) \smallsetminus \{ X \}$
|
||||
\item $\mathcal{F}_v(p(t)) = \bigcup \{ \text{variables of $t$} \}$
|
||||
\item $\mathcal{F}_v(\top) = \mathcal{F}_v(\bot) = \varnothing$
|
||||
\item $\mathcal{F}_v(\lnot F) = \mathcal{F}_v(F)$
|
||||
\item $\mathcal{F}_v(F_1 \land F_2) = \mathcal{F}_v(F_1 \vee F_2) = \mathcal{F}_v(F_1 \Rightarrow F_2) = \mathcal{F}_v(F_1) \cup \mathcal{F}_v(F_2)$
|
||||
\item $\mathcal{F}_v(\forall X.F) = \mathcal{F}_v(\exists X.F) = \mathcal{F}_v(F) \smallsetminus \{ X \}$
|
||||
\end{itemize}
|
||||
|
||||
\begin{description}
|
||||
@ -60,7 +60,7 @@ Using the basic syntax, the following constructs can be defined:
|
||||
\item[Theory] \marginnote{Theory}
|
||||
Set of sentences.
|
||||
|
||||
\item[Ground term/Formula] \marginnote{Formula}
|
||||
\item[Ground term/Ground formula] \marginnote{Ground term/Ground formula}
|
||||
Proposition without variables.
|
||||
\end{description}
|
||||
\end{description}
|
||||
@ -71,13 +71,13 @@ Using the basic syntax, the following constructs can be defined:
|
||||
|
||||
\begin{description}
|
||||
\item[Interpretation] \marginnote{Interpretation}
|
||||
An interpretation in first order logic $\mathcal{I}$ is a pair $(D, I)$:
|
||||
An interpretation in first-order logic $\mathcal{I}$ is a pair $(D, I)$:
|
||||
\begin{itemize}
|
||||
\item $D$ is the domain of the terms.
|
||||
\item $I$ is the interpretation function such that:
|
||||
\begin{itemize}
|
||||
\item $I(f): D^n \rightarrow D$ for every n-ary function symbol.
|
||||
\item $I(p) \subseteq D^n$ for every n-ary predicate symbol.
|
||||
\item The interpretation of an n-ary function symbol is a function $I(f): D^n \rightarrow D$.
|
||||
\item The interpretation of an n-ary predicate symbol is a relation $I(p) \subseteq D^n$.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
@ -101,22 +101,22 @@ Using the basic syntax, the following constructs can be defined:
|
||||
\item[Logical consequence] \marginnote{Logical consequence}
|
||||
A sentence $T_1$ is a logical consequence of $T_2$ ($T_2 \models T_1$) if
|
||||
every model of $T_2$ is also model of $T_1$:
|
||||
\[ \mathcal{I} \models T_2 \rightarrow \mathcal{I} \models T_1 \]
|
||||
\[ \mathcal{I} \models T_2 \Rightarrow \mathcal{I} \models T_1 \]
|
||||
|
||||
\begin{theorem}
|
||||
It is undecidable to determine if a first order logic formula is a tautology.
|
||||
Determining if a first-order logic formula is a tautology is undecidable.
|
||||
\end{theorem}
|
||||
|
||||
\item[Equivalence] \marginnote{Equivalence}
|
||||
A sentence $T_1$ is equivalent to $T_2$ if $T_1 \models T_2$ and $T_2 \models T_1$.
|
||||
A sentence $T_1$ is equivalent to $T_2$ iff $T_1 \models T_2$ and $T_2 \models T_1$.
|
||||
\end{description}
|
||||
|
||||
\begin{theorem}
|
||||
The following statements are equivalent:
|
||||
\begin{enumerate}
|
||||
\item $F_1, \dots, F_n \models G$.
|
||||
\item $(\bigwedge_{i=1}^{n} F_i) \rightarrow G$ is valid.
|
||||
\item $(\bigwedge_{i=1}^{n} F_i) \land \lnot G$ is unsatisfiable.
|
||||
\item $F_1 \land \dots \land F_n \Rightarrow G$ is valid (i.e. deduction).
|
||||
\item $F_1 \land \dots \land F_n \land \lnot G$ is unsatisfiable (i.e. refutation).
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
|
||||
@ -125,7 +125,7 @@ Using the basic syntax, the following constructs can be defined:
|
||||
|
||||
\begin{description}
|
||||
\item[Substitution] \marginnote{Substitution}
|
||||
A substitution $\sigma: \mathcal{V} \rightarrow \mathcal{T}$ is a mapping from variables to terms.
|
||||
A substitution $\sigma: \mathcal{V} \Rightarrow \mathcal{T}$ is a mapping from variables to terms.
|
||||
It is written as $\{ X_1 \mapsto t_1, \dots, X_n \mapsto t_n \}$.
|
||||
|
||||
The application of a substitution is the following:
|
||||
@ -134,8 +134,8 @@ Using the basic syntax, the following constructs can be defined:
|
||||
\item $f(t_1, \dots, t_n)\sigma = fp(t_1\sigma, \dots, t_n\sigma)$
|
||||
\item $\bot\sigma = \bot$ and $\top\sigma = \top$
|
||||
\item $(\lnot F)\sigma = (\lnot F\sigma)$
|
||||
\item $(F_1 \star F_2)\sigma = (F_1\sigma \star F_2\sigma)$ for $\star \in \{ \land, \vee, \rightarrow \}$
|
||||
\item $(\forall X.F)\sigma = \forall X' (F \sigma[X \mapsto X'])$ where $X'$ is a fresh variable (i.e. does not appear in $F$).
|
||||
\item $(F_1 \star F_2)\sigma = (F_1\sigma \star F_2\sigma)$ for $\star \in \{ \land, \vee, \Rightarrow \}$
|
||||
\item $(\forall X.F)\sigma = \forall X' (F \sigma[X \mapsto X'])$ where $X'$ is a fresh variable (i.e. it does not appear in $F$).
|
||||
\item $(\exists X.F)\sigma = \exists X' (F \sigma[X \mapsto X'])$ where $X'$ is a fresh variable.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
@ -13,8 +13,8 @@ A logic program has the following components (defined using BNF):
|
||||
|
||||
\item[Horn clause] \marginnote{Horn clause}
|
||||
A clause with at most one positive literal.
|
||||
\[ K := A \leftarrow G \]
|
||||
In other words, $A$ and all the literals in $G$ are positive as $A \leftarrow G = A \vee \lnot G$.
|
||||
\[ K := A \Leftarrow G \]
|
||||
In other words, $A$ and all the literals in $G$ are positive as $A \Leftarrow G = A \vee \lnot G$.
|
||||
|
||||
\item[Program] \marginnote{Program}
|
||||
$P := K_1 \dots K_m$ for $m \geq 0$
|
||||
@ -52,14 +52,14 @@ A logic program has the following components (defined using BNF):
|
||||
|
||||
\item[Computed answer substitution] \marginnote{Computed answer substitution}
|
||||
Given a goal $G$ and a program $P$, if there exists a successful derivation
|
||||
$\langle G, \varepsilon \rangle \mapsto* \langle \top, \theta \rangle$,
|
||||
$\langle G, \varepsilon \rangle \mapsto^* \langle \top, \theta \rangle$,
|
||||
then the substitution $\theta$ is the computed answer substitution of $G$.
|
||||
|
||||
\item[Transition] \marginnote{Transition}
|
||||
Starting from the state $\langle A \land G, \theta \rangle$ of a program $P$, a transition on the atom $A$ can result in:
|
||||
\begin{descriptionlist}
|
||||
\item[Unfold]
|
||||
If there exists a clause $(B \leftarrow H)$ in $P$ and
|
||||
If there exists a clause $(B \Leftarrow H)$ in $P$ and
|
||||
a (most general) unifier $\beta$ for $A\theta$ and $B$,
|
||||
then we have a transition: $\langle A \land G, \theta \rangle \mapsto \langle H \land G, \theta\beta \rangle$.
|
||||
|
||||
@ -67,7 +67,7 @@ A logic program has the following components (defined using BNF):
|
||||
To do this, we search for a clause that has as conclusion $A\theta$ and add its premise to the things to prove.
|
||||
If a unification is needed to match $A\theta$, we add it to the substitutions of the state.
|
||||
\item[Failure]
|
||||
If there are no clauses $(B \leftarrow H)$ in $P$ with a unifier for $A\theta$ and $B$,
|
||||
If there are no clauses $(B \Leftarrow H)$ in $P$ with a unifier for $A\theta$ and $B$,
|
||||
then we have a transition: $\langle A \land G, \theta \rangle \mapsto \langle \bot, \varepsilon \rangle$.
|
||||
\end{descriptionlist}
|
||||
|
||||
@ -79,7 +79,7 @@ A logic program has the following components (defined using BNF):
|
||||
This affects the length of the derivation (infinite in the worst case).
|
||||
|
||||
\item[Don't-know] \marginnote{Don't-know}
|
||||
Any clause $(B \rightarrow H)$ in $P$ with an unifier for $A\theta$ and $B$ can be chosen.
|
||||
Any clause $(B \Leftarrow H)$ in $P$ with a unifier for $A\theta$ and $B$ can be chosen.
|
||||
This determines the output of the derivation.
|
||||
\end{descriptionlist}
|
||||
\end{description}
|
||||
@ -101,7 +101,7 @@ A logic program has the following components (defined using BNF):
|
||||
|
||||
\begin{theorem}[Completeness]
|
||||
Given a program $P$, a goal $G$ and a substitution $\theta$,
|
||||
if $P \models G\theta$, then it exists a computed answer substitution $\sigma$ such that $G\theta = G\sigma\beta$.
|
||||
if $P \models G\theta$, then there exists a computed answer substitution $\sigma$ such that $G\theta = G\sigma\beta$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem}
|
||||
|
||||
@ -9,7 +9,7 @@
|
||||
The symbols of propositional logic are:
|
||||
\begin{descriptionlist}
|
||||
\item[Proposition symbols] $p_0$, $p_1$, \dots
|
||||
\item[Connectives] $\land$ $\vee$ $\rightarrow$ $\leftrightarrow$ $\lnot$ $\bot$ $($ $)$
|
||||
\item[Connectives] $\land$ $\vee$ $\Rightarrow$ $\Leftrightarrow$ $\lnot$ $\bot$ $($ $)$
|
||||
\end{descriptionlist}
|
||||
|
||||
\begin{description}
|
||||
@ -22,12 +22,12 @@ The symbols of propositional logic are:
|
||||
\item If $S_1$ and $S_2$ are well-formed, $S_1 \vee S_2$ is well-formed.
|
||||
\end{itemize}
|
||||
|
||||
Note that the implication $S_1 \rightarrow S_2$ can be written as $\lnot S_1 \vee S_2$.
|
||||
Note that the implication $S_1 \Rightarrow S_2$ can be written as $\lnot S_1 \vee S_2$.
|
||||
|
||||
The BNF definition of a formula is:
|
||||
\[
|
||||
F := \texttt{atomic\_proposition} \,|\, F \land F \,|\, F \vee F \,|\,
|
||||
F \rightarrow F \,|\, F \leftrightarrow F \,|\, \lnot F \,|\, (F)
|
||||
F \Rightarrow F \,|\, F \Leftrightarrow F \,|\, \lnot F \,|\, (F)
|
||||
\]
|
||||
% \[
|
||||
% \begin{split}
|
||||
@ -35,8 +35,8 @@ The symbols of propositional logic are:
|
||||
% &\lnot \texttt{<formula>} \,|\, \\
|
||||
% &\texttt{<formula>} \land \texttt{<formula>} \,|\, \\
|
||||
% &\texttt{<formula>} \vee \texttt{<formula>} \,|\, \\
|
||||
% &\texttt{<formula>} \rightarrow \texttt{<formula>} \,|\, \\
|
||||
% &\texttt{<formula>} \leftrightarrow \texttt{<formula>} \,|\, \\
|
||||
% &\texttt{<formula>} \Rightarrow \texttt{<formula>} \,|\, \\
|
||||
% &\texttt{<formula>} \Leftrightarrow \texttt{<formula>} \,|\, \\
|
||||
% &(\texttt{<formula>}) \\
|
||||
% \end{split}
|
||||
% \]
|
||||
@ -64,7 +64,7 @@ The symbols of propositional logic are:
|
||||
to the atoms $\{ A_1, \dots, A_n \}$ an element of $D$.
|
||||
\end{itemize}
|
||||
|
||||
Note: given a formula $F$ of $n$ distinct atoms, there are $2^n$ district interpretations.
|
||||
Note: given a formula $F$ of $n$ distinct atoms, there are $2^n$ distinct interpretations.
|
||||
|
||||
\begin{description}
|
||||
\item[Model] \marginnote{Model}
|
||||
@ -100,14 +100,14 @@ The symbols of propositional logic are:
|
||||
\item $\lnot S$ is true iff $S$ is false.
|
||||
\item $S_1 \land S_2$ is true iff $S_1$ is true and $S_2$ is true.
|
||||
\item $S_1 \vee S_2$ is true iff $S_1$ is true or $S_2$ is true.
|
||||
\item $S_1 \rightarrow S_2$ is true iff $S_1$ is false or $S_2$ is true.
|
||||
\item $S_1 \leftrightarrow S_2$ is true iff $S_1 \rightarrow S_2$ is true and $S_1 \leftarrow S_2$ is true.
|
||||
\item $S_1 \Rightarrow S_2$ is true iff $S_1$ is false or $S_2$ is true.
|
||||
\item $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_1 \Leftarrow S_2$ is true.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\item[Evaluation] \marginnote{Evaluation order}
|
||||
The connectives of a propositional formula are evaluated in the order:
|
||||
\[ \leftrightarrow, \rightarrow, \vee, \land, \lnot \]
|
||||
The connectives of a propositional formula are evaluated in the following order:
|
||||
\[ \Leftrightarrow, \Rightarrow, \vee, \land, \lnot \]
|
||||
Formulas in parenthesis have higher priority.
|
||||
|
||||
\item[Logical consequence] \marginnote{Logical consequence}
|
||||
@ -128,9 +128,9 @@ The symbols of propositional logic are:
|
||||
\item[Associativity]: $((P \land Q) \land R) \equiv (P \land (Q \land R))$
|
||||
and $((P \vee Q) \vee R) \equiv (P \vee (Q \vee R))$
|
||||
\item[Double negation elimination]: $\lnot(\lnot P) \equiv P$
|
||||
\item[Contraposition]: $(P \rightarrow Q) \equiv (\lnot Q \rightarrow \lnot P)$
|
||||
\item[Implication elimination]: $(P \rightarrow Q) \equiv (\lnot P \vee Q)$
|
||||
\item[Biconditional elimination]: $(P \leftrightarrow Q) \equiv ((P \rightarrow Q) \land (Q \rightarrow P))$
|
||||
\item[Contraposition]: $(P \Rightarrow Q) \equiv (\lnot Q \Rightarrow \lnot P)$
|
||||
\item[Implication elimination]: $(P \Rightarrow Q) \equiv (\lnot P \vee Q)$
|
||||
\item[Biconditional elimination]: $(P \Leftrightarrow Q) \equiv ((P \Rightarrow Q) \land (Q \Rightarrow P))$
|
||||
\item[De Morgan]: $\lnot(P \land Q) \equiv (\lnot P \vee \lnot Q)$ and $\lnot(P \vee Q) \equiv (\lnot P \land \lnot Q)$
|
||||
\item[Distributivity of $\land$ over $\vee$]: $(P \land (Q \vee R)) \equiv ((P \land Q) \vee (P \land R))$
|
||||
\item[Distributivity of $\vee$ over $\land$]: $(P \vee (Q \land R)) \equiv ((P \vee Q) \land (P \vee R))$
|
||||
@ -179,34 +179,34 @@ The symbols of propositional logic are:
|
||||
\begin{description}
|
||||
\item[Sound] \marginnote{Soundness}
|
||||
A reasoning method $E$ is sound iff:
|
||||
\[ (\Gamma \vdash^E F) \rightarrow (\Gamma \models F) \]
|
||||
\[ (\Gamma \vdash^E F) \Rightarrow (\Gamma \models F) \]
|
||||
|
||||
\item[Complete] \marginnote{Completeness}
|
||||
A reasoning method $E$ is complete iff:
|
||||
\[ (\Gamma \models F) \rightarrow (\Gamma \vdash^E F) \]
|
||||
\[ (\Gamma \models F) \Rightarrow (\Gamma \vdash^E F) \]
|
||||
\end{description}
|
||||
|
||||
\item[Deduction theorem] \marginnote{Deduction theorem}
|
||||
Given a set of formulas $\{ F_1, \dots, F_n \}$ and a formula $G$:
|
||||
\[ (F_1 \land \dots \land F_n) \models G \,\iff\, \models (F_1 \land \dots \land F_n) \rightarrow G \]
|
||||
\[ (F_1 \land \dots \land F_n) \models G \,\iff\, \models (F_1 \land \dots \land F_n) \Rightarrow G \]
|
||||
|
||||
\begin{proof} \phantom{}
|
||||
\begin{description}
|
||||
\item[$\rightarrow$])
|
||||
\item[$\Rightarrow$])
|
||||
By hypothesis $(F_1 \land \dots \land F_n) \models G$.
|
||||
|
||||
So, for each interpretation $\mathcal{I}$ in which $(F_1 \land \dots \land F_n)$ is true,
|
||||
$G$ is also true.
|
||||
Therefore, $\mathcal{I} \models (F_1 \land \dots \land F_n) \rightarrow G$.
|
||||
Therefore, $\mathcal{I} \models (F_1 \land \dots \land F_n) \Rightarrow G$.
|
||||
|
||||
Moreover, for each interpretation $\mathcal{I}'$ in which $(F_1 \land \dots \land F_n)$ is false,
|
||||
$(F_1 \land \dots \land F_n) \rightarrow G$ is true.
|
||||
Therefore, $\mathcal{I}' \models (F_1 \land \dots \land F_n) \rightarrow G$.
|
||||
$(F_1 \land \dots \land F_n) \Rightarrow G$ is true.
|
||||
Therefore, $\mathcal{I}' \models (F_1 \land \dots \land F_n) \Rightarrow G$.
|
||||
|
||||
In conclusion, $\models (F_1 \land \dots \land F_n) \rightarrow G$.
|
||||
In conclusion, $\models (F_1 \land \dots \land F_n) \Rightarrow G$.
|
||||
|
||||
\item[$\leftarrow$])
|
||||
By hypothesis $\models (F_1 \land \dots \land F_n) \rightarrow G$.
|
||||
\item[$\Leftarrow$])
|
||||
By hypothesis $\models (F_1 \land \dots \land F_n) \Rightarrow G$.
|
||||
Therefore, for each interpretation where $(F_1 \land \dots \land F_n)$ is true,
|
||||
$G$ is also true.
|
||||
|
||||
@ -240,9 +240,9 @@ The symbols of propositional logic are:
|
||||
\begin{description}
|
||||
\item[Natural deduction] \marginnote{Natural deduction for propositional logic}
|
||||
Set of rules to introduce or eliminate connectives.
|
||||
We consider a subset $\{ \land, \rightarrow, \bot \}$ of functionally complete connectives.
|
||||
We consider a subset $\{ \land, \Rightarrow, \bot \}$ of functionally complete connectives.
|
||||
|
||||
Natural deduction can be represented using a tree like structure:
|
||||
Natural deduction can be represented using a tree-like structure:
|
||||
\begin{prooftree}
|
||||
\AxiomC{[hypothesis]}
|
||||
\noLine
|
||||
@ -252,12 +252,14 @@ The symbols of propositional logic are:
|
||||
\RightLabel{rule name}\UnaryInfC{conclusion}
|
||||
\end{prooftree}
|
||||
|
||||
The conclusion is true when the hypothesis are able to prove the premise.
|
||||
Another tree can be built on top of premises to prove them.
|
||||
The conclusion is true when the hypotheses can prove the premise.
|
||||
Another tree can be built on top of the premises to prove them.
|
||||
|
||||
\begin{descriptionlist}
|
||||
\item[Introduction] \marginnote{Introduction rules}
|
||||
Usually used to prove the conclusion by splitting it.\\
|
||||
Usually used to prove the conclusion by splitting it.
|
||||
|
||||
Note that $\lnot \psi \equiv (\psi \Rightarrow \bot)$. \\
|
||||
\begin{minipage}{.4\linewidth}
|
||||
\begin{prooftree}
|
||||
\AxiomC{$\psi$}
|
||||
@ -272,7 +274,7 @@ The symbols of propositional logic are:
|
||||
\UnaryInfC{\vdots}
|
||||
\noLine
|
||||
\UnaryInfC{$\psi$}
|
||||
\RightLabel{$\rightarrow$I}\UnaryInfC{$\varphi \rightarrow \psi$}
|
||||
\RightLabel{$\Rightarrow$I}\UnaryInfC{$\varphi \Rightarrow \psi$}
|
||||
\end{prooftree}
|
||||
\end{minipage}
|
||||
|
||||
@ -293,16 +295,18 @@ The symbols of propositional logic are:
|
||||
\begin{minipage}{.3\linewidth}
|
||||
\begin{prooftree}
|
||||
\AxiomC{$\varphi$}
|
||||
\AxiomC{$\varphi \rightarrow \psi$}
|
||||
\RightLabel{$\rightarrow$E}\BinaryInfC{$\psi$}
|
||||
\AxiomC{$\varphi \Rightarrow \psi$}
|
||||
\RightLabel{$\Rightarrow$E}\BinaryInfC{$\psi$}
|
||||
\end{prooftree}
|
||||
\end{minipage}
|
||||
|
||||
\item[Ex falso sequitur quodlibet] \marginnote{Ex falso sequitur quodlibet}
|
||||
From contradiction, anything follows.
|
||||
This can be used when we have two contradicting hypothesis.
|
||||
This can be used when we have two contradicting hypotheses.
|
||||
\begin{prooftree}
|
||||
\AxiomC{$\bot$}
|
||||
\AxiomC{$\psi$}
|
||||
\AxiomC{$\lnot \psi$}
|
||||
\BinaryInfC{$\bot$}
|
||||
\RightLabel{$\bot$}\UnaryInfC{$\varphi$}
|
||||
\end{prooftree}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user