Add CN nervous system cells
@ -4,9 +4,19 @@
|
||||
\date{2023 -- 2024}
|
||||
\def\lastupdate{{PLACEHOLDER-LAST-UPDATE}}
|
||||
|
||||
\DeclareAcronym{psp}{short=PSP, long=postsynaptic potential, long-plural=s}
|
||||
\DeclareAcronym{epsp}{short=EPSP, long=excitatory postsynaptic potential, long-plural=s}
|
||||
\DeclareAcronym{ipsp}{short=IPSP, long=inhibitory postsynaptic potential, long-plural=s}
|
||||
\DeclareAcronym{ap}{short=AP, long=action potential, long-plural=s}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\makenotesfront
|
||||
\printacronyms
|
||||
\newpage
|
||||
|
||||
\input{./sections/_introduction.tex}
|
||||
\input{./sections/_nervous_system.tex}
|
||||
|
||||
\end{document}
|
||||
BIN
src/cognition-and-neuroscience/img/action_potential.png
Normal file
|
After Width: | Height: | Size: 52 KiB |
BIN
src/cognition-and-neuroscience/img/astrocyte.png
Normal file
|
After Width: | Height: | Size: 975 KiB |
BIN
src/cognition-and-neuroscience/img/axoaxonic.png
Normal file
|
After Width: | Height: | Size: 100 KiB |
BIN
src/cognition-and-neuroscience/img/axodendritic.png
Normal file
|
After Width: | Height: | Size: 98 KiB |
BIN
src/cognition-and-neuroscience/img/axosomatic.png
Normal file
|
After Width: | Height: | Size: 93 KiB |
BIN
src/cognition-and-neuroscience/img/insulation.png
Normal file
|
After Width: | Height: | Size: 946 KiB |
BIN
src/cognition-and-neuroscience/img/microglia.png
Normal file
|
After Width: | Height: | Size: 604 KiB |
BIN
src/cognition-and-neuroscience/img/neuron_eukaryotic.png
Normal file
|
After Width: | Height: | Size: 855 KiB |
BIN
src/cognition-and-neuroscience/img/neuron_specific.png
Normal file
|
After Width: | Height: | Size: 179 KiB |
BIN
src/cognition-and-neuroscience/img/neuron_transmission.png
Normal file
|
After Width: | Height: | Size: 115 KiB |
BIN
src/cognition-and-neuroscience/img/neuron_transmission2.png
Normal file
|
After Width: | Height: | Size: 88 KiB |
BIN
src/cognition-and-neuroscience/img/saltatory_conduction.png
Normal file
|
After Width: | Height: | Size: 67 KiB |
319
src/cognition-and-neuroscience/sections/_nervous_system.tex
Normal file
@ -0,0 +1,319 @@
|
||||
\chapter{Nervous system anatomy and physiology}
|
||||
|
||||
|
||||
\begin{description}
|
||||
\item[Central nervous system] Brain and spinal cord.
|
||||
\item[Peripheral nervous system] Nerves that branch off from the brain and the spine.
|
||||
\end{description}
|
||||
|
||||
\section{Individual cells}
|
||||
|
||||
% A nervous system has two types of cells:
|
||||
% \begin{descriptionlist}
|
||||
% \item[Neurons/nerve cells]
|
||||
% \item[Glia cells/neuroglia]
|
||||
% \end{descriptionlist}
|
||||
|
||||
|
||||
\subsection{Glia cells / Neuroglia}
|
||||
\marginnote{Glia cells/Neuroglia}
|
||||
Cells that support neurons.
|
||||
There are 2 to 10 times more glia cells than neurons.\\
|
||||
|
||||
\begin{minipage}{0.89\textwidth}
|
||||
\begin{descriptionlist}
|
||||
\item[Microglia] \marginnote{Microglia}
|
||||
Immune system cells located in the central nervous system.
|
||||
They intervene in response to toxic agents or to clear dead cells.
|
||||
\begin{itemize}
|
||||
\item Responsible for antigen presentation (determine the type of external agent).
|
||||
\item Become phagocytes (cells that ingest harmful agents) during injuries, infections, or degenerative diseases.
|
||||
\end{itemize}
|
||||
|
||||
\begin{remark}
|
||||
In patients affected by Alzheimer's disease, microglia may become hyperactive and damage neurons.
|
||||
\end{remark}
|
||||
\end{descriptionlist}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.1\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{./img/microglia.png}
|
||||
\end{minipage}\\[1em]
|
||||
|
||||
\begin{minipage}{0.79\textwidth}
|
||||
\begin{descriptionlist}
|
||||
\item[Astrocytes] \marginnote{Astrocytes}
|
||||
Star-shaped cells located in the central nervous system.
|
||||
They surround neurons and are in contact with the brain's vasculature.
|
||||
\begin{itemize}
|
||||
\item Provide nourishment to neurons.
|
||||
\item Regulate the concentration of ions and neurotransmitters in the extracellular space.
|
||||
\item Communicate with the neurons to modulate synaptic signaling.
|
||||
\item Maintain the blood-brain barrier that separates the tissues of the central nervous system and the blood.
|
||||
\end{itemize}
|
||||
\end{descriptionlist}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{./img/astrocyte.png}
|
||||
\end{minipage}\\[1em]
|
||||
|
||||
\begin{minipage}{0.79\textwidth}
|
||||
\begin{descriptionlist}
|
||||
\item[Oligodendrocytes and Schwann cells] \marginnote{Oligodendrocytes\\Schwann cells}
|
||||
Oligodendrocytes are located in the central nervous system, while
|
||||
Schwann cells are located in the peripheral nervous system.
|
||||
\begin{itemize}
|
||||
\item Produce thin sheets of myelin that wrap concentrically around the axon of the neurons.
|
||||
This insulating material allows the rapid conduction of electrical signals along the axon.
|
||||
\end{itemize}
|
||||
|
||||
\begin{remark}
|
||||
Myelin is white, giving the name to the white matter.
|
||||
\end{remark}
|
||||
|
||||
\begin{remark}
|
||||
In multiple sclerosis, the immune system attacks the oligodendrocytes,
|
||||
slowing or disrupting messages traveling along the nerves.
|
||||
\end{remark}
|
||||
\end{descriptionlist}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{./img/insulation.png}
|
||||
\end{minipage}
|
||||
|
||||
|
||||
|
||||
\subsection{Neurons / Nerve cells}
|
||||
\marginnote{Neurons/Nerve cells}
|
||||
|
||||
A nervous system has around 100 billion neurons.
|
||||
There are 100 distinct types of neurons varying in form, location, and interconnectivity.
|
||||
|
||||
Generally, a neuron does the following:
|
||||
\begin{enumerate}
|
||||
\item Receives some information.
|
||||
\item Makes a decision.
|
||||
\item Passes it to other neurons.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{description}
|
||||
\item[Eukaryotic cell] \marginnote{Eukaryotic cell}
|
||||
A neuron is an eukaryotic cell. Therefore, it has:
|
||||
\begin{description}
|
||||
\item[Cell membrane] Membrane that separates the intracellular and extracellular space.
|
||||
\item[Cytoplasm] Intracellular fluid mainly made of proteins and ions of potassium, sodium, chloride, and calcium.
|
||||
\item[Extracellular fluid] Fluid in which the neuron sits. Similar composition of the cytoplasm.
|
||||
\item[Cell body/soma] Metabolic center of the cell.
|
||||
\end{description}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{img/neuron_eukaryotic.png}
|
||||
\caption{Neuron as an eukaryotic cell}
|
||||
\end{figure}
|
||||
\end{description}
|
||||
|
||||
\begin{description}
|
||||
\item[Neuron-specific components] \phantom{}
|
||||
\begin{description}
|
||||
\item[Dendrites] \marginnote{Dendrites}
|
||||
Receives the outputs of other neurons.
|
||||
A neuron has multiple dendrites with different shapes depending on the type and location of the neuron.
|
||||
\item[Axon] \marginnote{Axon}
|
||||
Transmitting zone of the neuron that carries electrical signals from the dendrites to the synapses (from 0.1mm to 2m).
|
||||
A neuron has a single axon.
|
||||
\item[Synapses] \marginnote{Synapses}
|
||||
Represents the output zone of the neuron from where electrical or chemical signals can be transmitted to other cells.
|
||||
A neuron has multiple synapses.
|
||||
|
||||
\begin{description}
|
||||
\item[Presynaptic cell] Cell transmitting a signal.
|
||||
\item[Postsynaptic cell] Cell receiving a signal.
|
||||
\item[Synaptic cleft] Narrow space separating presynaptic and postsynaptic cells (i.e. the space separating two neurons).
|
||||
\end{description}
|
||||
\end{description}
|
||||
\end{description}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{img/neuron_specific.png}
|
||||
\caption{Neuron-specific components}
|
||||
\end{figure}
|
||||
|
||||
There are three types of synapses:
|
||||
\begin{descriptionlist}
|
||||
\item[Axosomatic] \marginnote{Axosomatic}
|
||||
Synapses that a neuron makes onto the cell body (soma) of another neuron.
|
||||
\item[Axodendritic] \marginnote{Axodendritic}
|
||||
Synapses that a neuron makes onto the dendrites of another neuron.
|
||||
\item[Axoaxonic] \marginnote{Axoaxonic}
|
||||
Synapses that a neuron makes onto the synapses of another neuron.
|
||||
In this case, the transmitting neuron can be seen as a signal modulator of the receiving neuron.
|
||||
\begin{figure}[h]
|
||||
\begin{subfigure}{.3\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/axosomatic.png}
|
||||
\caption{Axosomatic}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.3\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/axodendritic.png}
|
||||
\caption{Axodendritic}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.3\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/axoaxonic.png}
|
||||
\caption{Axoaxonic}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
\end{descriptionlist}
|
||||
|
||||
Neurons are divided into three functional categories:
|
||||
\begin{descriptionlist}
|
||||
\item[Sensory neurons] \marginnote{Sensory neurons}
|
||||
Carry information from the body's peripheral sensors into the nervous system.
|
||||
Provides both perception and motor coordination.
|
||||
|
||||
\item[Motor neurons] \marginnote{Motor neurons}
|
||||
Carry commands from the brain or the spinal cord to muscles and glands.
|
||||
|
||||
\item[Interneurons] \marginnote{Interneurons}
|
||||
Intermediate neurons between sensory and motor neurons.
|
||||
\end{descriptionlist}
|
||||
|
||||
\begin{description}
|
||||
\item[Principle of connectional specificity] \marginnote{Principle of connectional specificity}
|
||||
Neurons do not connect randomly but rather make specific connections at particular contact points.
|
||||
\end{description}
|
||||
|
||||
|
||||
|
||||
\section{Information transfer within a neuron}
|
||||
|
||||
|
||||
\subsection{Neuron functional regions}
|
||||
|
||||
In a neuron, there are four regions that handle signals:
|
||||
\begin{descriptionlist}
|
||||
\item[Input zone] \marginnote{Input zone}
|
||||
Dendrites collect information from different sources
|
||||
in the form of \aclp{psp} (\acp{psp}).
|
||||
|
||||
\item[Integration/trigger zone] \marginnote{Integration/trigger zone}
|
||||
\acp{psp} are summed at the axon hillock and an \ac{ap} is generated if a threshold (-55mV) has been exceeded.
|
||||
|
||||
\item[Conductive zone] \marginnote{Conductive zone}
|
||||
The \ac{ap} is propagated through the axon.
|
||||
|
||||
\item[Output zone] \marginnote{Output zone}
|
||||
Synapses transfer information to other cells.
|
||||
|
||||
\begin{description}
|
||||
\item[Chemical synapses] The frequency of \acp{ap} determines the amount of neurotransmitters released.
|
||||
\item[Electrical synapses] The \ac{ap} is directly transmitted to the next neurons.
|
||||
\end{description}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{./img/neuron_transmission.png}
|
||||
\caption{Transmitting regions of different types of neurons}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{./img/neuron_transmission2.png}
|
||||
\caption{Signal from the input to the output zones}
|
||||
\end{figure}
|
||||
\end{descriptionlist}
|
||||
|
||||
|
||||
\subsection{Neuron transmission signals}
|
||||
|
||||
\begin{description}
|
||||
\item[Resting membrane potential] \marginnote{Resting membrane potential}
|
||||
In a resting neuron, the voltage inside the cell is more negative ($-70$mV) than the outside.
|
||||
This allows the creation of an electrical signal when needed.
|
||||
|
||||
\item[\Acl{psp} (\ac{psp})] \marginnote{\Acl{psp} (\ac{psp})}
|
||||
Small change in the membrane potential that alters the resting voltage of the cell.
|
||||
|
||||
A \ac{psp} can be:
|
||||
\begin{descriptionlist}
|
||||
\item[Excitatory \ac{psp} (\acs{epsp})] \marginnote{Excitatory \ac{psp}}
|
||||
Has a depolarizing role: produces a decrease in the membrane potential (i.e. increases voltage inside the cell),
|
||||
therefore enhancing the ability to generate an \ac{ap}.
|
||||
|
||||
\item[Inhibitory \ac{psp} (\acs{ipsp})] \marginnote{Inhibitory \ac{psp}}
|
||||
Has a hyperpolarizing role: produces an increase in the membrane potential (i.e. reduces voltage inside the cell),
|
||||
therefore reducing the ability to generate an \ac{ap}.
|
||||
\end{descriptionlist}
|
||||
|
||||
A \ac{psp} has the following properties:
|
||||
\begin{itemize}
|
||||
\item The amplitude and duration of the signal are determined by the size of the stimulus that caused it.
|
||||
Overall, the amplitude is small.
|
||||
\item The signal is passively conducted through the cytoplasm, therefore it decays with distance and is able to travel 1mm at most.
|
||||
\item A single \acs{epsp} is not enough to fire a neuron. Multiple \acp{psp} are summed at the axon hillock.
|
||||
There are two types of summation:
|
||||
\begin{descriptionlist}
|
||||
\item[Spatial summation] Sum of the \acp{psp} received at the same time.
|
||||
\item[Temporal summation] Sum of the \acp{psp} received at different time points.
|
||||
\end{descriptionlist}
|
||||
|
||||
\begin{remark}
|
||||
The fact that a single \ac{epsp} is not enough to fire a neuron prevents a response to every single stimulus.
|
||||
\end{remark}
|
||||
\end{itemize}
|
||||
|
||||
\item[\Acl{ap} (\ac{ap})] \marginnote{\Acl{ap} (\ac{ap})}
|
||||
Signal generated when the sum of \acp{epsp} exceeds a fixed threshold of $-55$mV (all-or-none).
|
||||
|
||||
\begin{description}
|
||||
\item[Saltatory conduction] \marginnote{Saltatory conduction}
|
||||
Mechanism that allows a fast propagation on long distances of \acp{ap}.
|
||||
\begin{enumerate}
|
||||
\item Depolarization causes the sodium ion (Na+) channels located in the nodes of Ranvier of the axon to gradually open.
|
||||
\item Na+ flows into the neuron and further depolarizes it until the Na+ equilibrium potential is reached.
|
||||
\item With Na+ equilibrium, Na+ channels close and potassium ion (K+) channels open.
|
||||
\item K+ flows into the neuron and restores the membrane potential until the K+ equilibrium potential is reached.
|
||||
\item With K+ equilibrium, K+ channels close and
|
||||
the membrane potential of the neuron is more negative than the resting potential (hyperpolarization).
|
||||
It will gradually return to its resting potential.
|
||||
\begin{remark}
|
||||
During hyperpolarization, Na+ channels cannot open (refractory period).
|
||||
This has two implications:
|
||||
\begin{itemize}
|
||||
\item It limits the number of times a neuron can fire in a given time.
|
||||
\item Guarantees a unidirectional electrical current flow
|
||||
(\textbf{Principle of dynamic polarization}).\marginnote{Principle of dynamic polarization}
|
||||
\end{itemize}
|
||||
\end{remark}
|
||||
\end{enumerate}
|
||||
|
||||
\begin{figure}[H]
|
||||
\begin{subfigure}{.45\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=0.85\textwidth]{./img/saltatory_conduction.png}
|
||||
\caption{Ion channels along the axon}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.45\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{./img/action_potential.png}
|
||||
\caption{Triggering of an action potential}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
\end{description}
|
||||
|
||||
|
||||
\begin{remark}
|
||||
As the signal is constantly regenerated,
|
||||
\Acp{ap} have similar amplitude and duration in all neurons, regardless of the characteristics of the input \acp{psp}.
|
||||
Therefore, the only way an \ac{ap} has to carry information is by varying frequency and firing duration, making it a binary signal.
|
||||
\end{remark}
|
||||
\end{description}
|
||||
|
||||
\begin{example}
|
||||
Seizures are caused by misfiring neurons.
|
||||
\end{example}
|
||||