mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-15 19:12:22 +01:00
Add missing corollary and sections reorder
This commit is contained in:
@ -79,7 +79,10 @@
|
||||
\end{description}
|
||||
\end{description}
|
||||
|
||||
\begin{example}[Axes-aligned rectangles in $\mathbb{R}^2_{[0, 1]}$]
|
||||
|
||||
|
||||
\section{Axes-aligned rectangles over $\mathbb{R}^2_{[0, 1]}$}
|
||||
|
||||
Consider the instance space $X = \mathbb{R}^2_{[0, 1]}$
|
||||
and the concept class $\mathcal{C}$ of concepts represented by all the points contained within a rectangle parallel to the axes of arbitrary size.
|
||||
|
||||
@ -108,7 +111,7 @@
|
||||
\end{remark}
|
||||
|
||||
|
||||
\begin{theorem}[Axes-aligned rectangles in $\mathbb{R}^2_{[0, 1]}$ PAC learnability]
|
||||
\begin{theorem}[Axes-aligned rectangles over $\mathbb{R}^2_{[0, 1]}$ PAC learnability]
|
||||
It holds that:
|
||||
\begin{itemize}
|
||||
\item For every distribution $\mathcal{D}$,
|
||||
@ -156,4 +159,8 @@
|
||||
\textit{To be continued\dots}
|
||||
\end{proof}
|
||||
\end{theorem}
|
||||
\end{example}
|
||||
|
||||
|
||||
\begin{corollary}
|
||||
The concept class of axis-aligned rectangles over $\mathbb{R}^2_{[0, 1]}$ is efficiently PAC learnable.
|
||||
\end{corollary}
|
||||
Reference in New Issue
Block a user