mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-15 19:12:22 +01:00
Fix typos <noupdate>
This commit is contained in:
@ -98,8 +98,8 @@ Edge-based template matching that works as follows:
|
|||||||
\tilde{\vec{u}}_k(\tilde{P}_k) = \frac{\nabla \tilde{I}_{i,j}(\tilde{P}_k)}{\Vert \nabla \tilde{I}_{i,j}(\tilde{P}_k) \Vert}
|
\tilde{\vec{u}}_k(\tilde{P}_k) = \frac{\nabla \tilde{I}_{i,j}(\tilde{P}_k)}{\Vert \nabla \tilde{I}_{i,j}(\tilde{P}_k) \Vert}
|
||||||
\]
|
\]
|
||||||
\item Compute the similarity as the mean of the cosine similarities of each pair of gradients:
|
\item Compute the similarity as the mean of the cosine similarities of each pair of gradients:
|
||||||
\[ S(i, j) = \frac{1}{n} \sum_{k=1}^{n} \vec{u}_k(P_k) \cdot \tilde{\vec{u}}_k(\tilde{P}_k) = \frac{1}{n} \sum_{k=1}^{n} \cos \theta_k \in [-1, 1] \]
|
\[ S(T, \tilde{I}_{i,j}) = \frac{1}{n} \sum_{k=1}^{n} \vec{u}_k(P_k) \cdot \tilde{\vec{u}}_k(\tilde{P}_k) = \frac{1}{n} \sum_{k=1}^{n} \cos \theta_k \in [-1, 1] \]
|
||||||
$S(i, j) = 1$ when the gradients perfectly match. A minimum threshold $S_\text{min}$ is used to determine if there is a match.
|
$S(T, \tilde{I}_{i,j}) = 1$ when the gradients perfectly match. A minimum threshold $S_\text{min}$ is used to determine if there is a match.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
@ -109,15 +109,15 @@ Edge-based template matching that works as follows:
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
\subsection{Invariance to global inversion of contrast polarity}
|
\subsection{Invariance to contrast polarity inversion}
|
||||||
|
|
||||||
As an object might appear on a darker or brighter background, more robust similarity functions can be employed:
|
As an object might appear on a darker or brighter background, more robust similarity functions can be employed:
|
||||||
\begin{description}
|
\begin{description}
|
||||||
\item[Global polarity inversion contrast]
|
\item[Global contrast polarity inversion]
|
||||||
\[ S(i, j) = \frac{1}{n} \left\vert \sum_{k=1}^{n} \vec{u}_k(P_k) \cdot \tilde{\vec{u}}_k(\tilde{P}_k) \right\vert =
|
\[ S(i, j) = \frac{1}{n} \left\vert \sum_{k=1}^{n} \vec{u}_k(P_k) \cdot \tilde{\vec{u}}_k(\tilde{P}_k) \right\vert =
|
||||||
\frac{1}{n} \left\vert \sum_{k=1}^{n} \cos \theta_k \right\vert \]
|
\frac{1}{n} \left\vert \sum_{k=1}^{n} \cos \theta_k \right\vert \]
|
||||||
|
|
||||||
\item[Local polarity inversion contrast]
|
\item[Local contrast polarity inversion]
|
||||||
\[ S(i, j) = \frac{1}{n} \sum_{k=1}^{n} \left\vert \vec{u}_k(P_k) \cdot \tilde{\vec{u}}_k(\tilde{P}_k) \right\vert =
|
\[ S(i, j) = \frac{1}{n} \sum_{k=1}^{n} \left\vert \vec{u}_k(P_k) \cdot \tilde{\vec{u}}_k(\tilde{P}_k) \right\vert =
|
||||||
\frac{1}{n} \sum_{k=1}^{n} \left\vert \cos \theta_k \right\vert \]
|
\frac{1}{n} \sum_{k=1}^{n} \left\vert \cos \theta_k \right\vert \]
|
||||||
|
|
||||||
@ -269,11 +269,11 @@ Hough transform extended to detect an arbitrary shape.
|
|||||||
\item For each $\vec{r}_i$ in the corresponding row of the R-table:
|
\item For each $\vec{r}_i$ in the corresponding row of the R-table:
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item Compute an estimate of the barycenter as $\vec{y} = \vec{x} + \vec{r}_i$.
|
\item Compute an estimate of the barycenter as $\vec{y} = \vec{x} + \vec{r}_i$.
|
||||||
\item Cast a vote in the accumulator array $A[\vec{y}] \texttt{+=} 1$
|
\item Cast a vote in the accumulator array $A[\vec{y}] \texttt{+=} 1$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\item Find the local maxima of the accumulator vector to estimate the barycenters.
|
\item Find the local maxima of the accumulator vector to estimate the barycenter.
|
||||||
The shape can then be visually found by overlaying the template barycenter to the found barycenters.
|
The shape can then be visually found by overlaying the template barycenter to the found barycenter.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{description}
|
\end{description}
|
||||||
|
|
||||||
|
|||||||
@ -406,7 +406,7 @@ After finding the keypoints, a descriptor of a keypoint is computed from the pix
|
|||||||
Given a pixel $(x, y)$, its gradient magnitude and direction is computed from the Gaussian smoothed image $L$:
|
Given a pixel $(x, y)$, its gradient magnitude and direction is computed from the Gaussian smoothed image $L$:
|
||||||
\[
|
\[
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\vert \nabla L(x, y) \vert &= \sqrt{ \big( L(x+1, y) - L(x-1, y) \big)^2 + \big( L(x, y+1) - L(x, y-1) \big)^2 } \\
|
\Vert \nabla L(x, y) \Vert &= \sqrt{ \big( L(x+1, y) - L(x-1, y) \big)^2 + \big( L(x, y+1) - L(x, y-1) \big)^2 } \\
|
||||||
\theta_L(x, y) &= \arctan\left( \frac{L(x, y+1) - L(x, y-1)}{L(x+1, y) - L(x-1, y)} \right)
|
\theta_L(x, y) &= \arctan\left( \frac{L(x, y+1) - L(x, y-1)}{L(x+1, y) - L(x-1, y)} \right)
|
||||||
\end{split}
|
\end{split}
|
||||||
\]
|
\]
|
||||||
@ -416,7 +416,7 @@ After finding the keypoints, a descriptor of a keypoint is computed from the pix
|
|||||||
By dividing the directions into bins (e.g. bins of size $10^\circ$),
|
By dividing the directions into bins (e.g. bins of size $10^\circ$),
|
||||||
it is possible to define for each keypoint a histogram by considering its neighboring pixels within a patch.
|
it is possible to define for each keypoint a histogram by considering its neighboring pixels within a patch.
|
||||||
For each pixel $(x, y)$ neighboring a keypoint $(x_k, y_k)$, its contribution to the histogram along the direction $\theta_L(x, y)$ is given by:
|
For each pixel $(x, y)$ neighboring a keypoint $(x_k, y_k)$, its contribution to the histogram along the direction $\theta_L(x, y)$ is given by:
|
||||||
\[ G_{(x_k, y_k)}(x, y, \frac{3}{2} \sigma_s(x_k, y_k)) \cdot \vert \nabla L(x, y) \vert \]
|
\[ G_{(x_k, y_k)}\left( x, y, \frac{3}{2} \sigma_s(x_k, y_k) \right) \cdot \Vert \nabla L(x, y) \Vert \]
|
||||||
where $G_{(x_k, y_k)}$ is a Gaussian centered on the keypoint and $\sigma_s(x_k, y_k)$ is the scale of the keypoint.
|
where $G_{(x_k, y_k)}$ is a Gaussian centered on the keypoint and $\sigma_s(x_k, y_k)$ is the scale of the keypoint.
|
||||||
|
|
||||||
The characteristic orientation of a keypoint is given by the highest peak of the orientation histogram.
|
The characteristic orientation of a keypoint is given by the highest peak of the orientation histogram.
|
||||||
|
|||||||
Reference in New Issue
Block a user