mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Fix pagination <noupdate>
This commit is contained in:
@ -539,7 +539,7 @@ Formalized goal-directed and habitual actions:
|
||||
\includegraphics[width=0.95\linewidth]{./img/human_latent_experiment2.png}
|
||||
\end{minipage}\\[1em]
|
||||
|
||||
\begin{minipage}{0.7\linewidth}
|
||||
\begin{minipage}{0.6\linewidth}
|
||||
Behavioral results show that the majority of the candidates are able to make the optimal choice.
|
||||
This indicates that their behavior cannot be explained using a model-free learning theory (as learning only happens with a reward).
|
||||
A hybrid model has been proposed to model the candidates' behavior. It includes:
|
||||
@ -548,9 +548,9 @@ Formalized goal-directed and habitual actions:
|
||||
\item[State prediction error] Associated to model-based learning.
|
||||
\end{descriptionlist}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.3\linewidth}
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/human_latent_experiment3.png}
|
||||
\includegraphics[width=0.7\linewidth]{./img/human_latent_experiment3.png}
|
||||
\end{minipage}\\[1em]
|
||||
|
||||
On a neuronal level, fRMIs show that:
|
||||
|
||||
@ -58,7 +58,7 @@ There are 2 to 10 times more glia cells than neurons.\\
|
||||
\includegraphics[width=\textwidth]{./img/astrocyte.png}
|
||||
\end{minipage}\\[1em]
|
||||
|
||||
\begin{minipage}{0.79\textwidth}
|
||||
\begin{minipage}{0.82\textwidth}
|
||||
\begin{descriptionlist}
|
||||
\item[Oligodendrocytes and Schwann cells] \marginnote{Oligodendrocytes\\Schwann cells}
|
||||
Oligodendrocytes are located in the central nervous system, while
|
||||
@ -78,7 +78,7 @@ There are 2 to 10 times more glia cells than neurons.\\
|
||||
\end{remark}
|
||||
\end{descriptionlist}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\begin{minipage}{0.17\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{./img/insulation.png}
|
||||
\end{minipage}
|
||||
|
||||
@ -109,14 +109,17 @@ There are two types of learning:
|
||||
\caption{Conditioning process}
|
||||
\end{figure}
|
||||
|
||||
The learned response lasts for days.
|
||||
It can be observed that without training, the response disappears faster.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.3\linewidth]{./img/gill_pavlovian_graph.png}
|
||||
\caption{Withdrawal response decay}
|
||||
\end{figure}
|
||||
\begin{minipage}{0.55\linewidth}
|
||||
The learned response lasts for days.
|
||||
It can be observed that without training, the response disappears faster.
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.6\linewidth]{./img/gill_pavlovian_graph.png}
|
||||
\caption{Withdrawal response decay}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\end{casestudy}
|
||||
|
||||
\begin{remark} \marginnote{Amygdala in Pavlovian learning}
|
||||
@ -445,7 +448,7 @@ There is strong evidence that the dopaminergic system is the major neural mechan
|
||||
\begin{casestudy}
|
||||
\phantom{}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.4\linewidth]{./img/dopamine_transfer_cs.png}
|
||||
\includegraphics[width=0.38\linewidth]{./img/dopamine_transfer_cs.png}
|
||||
\end{center}
|
||||
\end{casestudy}
|
||||
|
||||
@ -460,7 +463,7 @@ There is strong evidence that the dopaminergic system is the major neural mechan
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.28\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=0.9\linewidth]{./img/dopamine_blocking.png}
|
||||
\includegraphics[width=0.8\linewidth]{./img/dopamine_blocking.png}
|
||||
\end{minipage}
|
||||
\end{casestudy}
|
||||
|
||||
|
||||
@ -438,7 +438,7 @@ The image plane of a camera converts the received irradiance into electrical sig
|
||||
\end{itemize}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{./img/_digitalization_quality.pdf}
|
||||
\includegraphics[width=0.6\textwidth]{./img/_digitalization_quality.pdf}
|
||||
\caption{Sampling and quantization using fewer bits}
|
||||
\end{figure}
|
||||
\end{remark}
|
||||
|
||||
@ -474,7 +474,7 @@ Network that aims to optimize computing resources.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.7\linewidth]{./img/_naive_inception.pdf}
|
||||
\includegraphics[width=0.65\linewidth]{./img/_naive_inception.pdf}
|
||||
\caption{Naive inception module on the output of the stem layers}
|
||||
\end{figure}
|
||||
|
||||
@ -489,7 +489,7 @@ Network that aims to optimize computing resources.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.7\linewidth]{./img/_actual_inception.pdf}
|
||||
\includegraphics[width=0.65\linewidth]{./img/_actual_inception.pdf}
|
||||
\caption{Actual inception module on the output of the stem layers}
|
||||
\end{figure}
|
||||
\end{description}
|
||||
|
||||
@ -471,14 +471,13 @@ Therefore, the complete workflow for image formation becomes the following:
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.45\linewidth]{./img/_zhang_image_acquistion.pdf}
|
||||
\includegraphics[width=0.4\linewidth]{./img/_zhang_image_acquistion.pdf}
|
||||
\caption{Example of two acquired images}
|
||||
\end{figure}
|
||||
\end{description}
|
||||
|
||||
\item[Initial homographies guess]
|
||||
For each image $i$, compute an initial guess of its homography $\matr{H}_i$.
|
||||
|
||||
Due to the choice of the $z$-axis position, the perspective projection matrix and the WRF points can be simplified:
|
||||
\[
|
||||
\begin{split}
|
||||
|
||||
Reference in New Issue
Block a user