mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Fix typo <noupdate>
This commit is contained in:
@ -34,7 +34,7 @@
|
||||
\item[Convex set] \marginnote{Convex set}
|
||||
A set $Z \subseteq \mathbb{R}^d$ is convex if it holds that:
|
||||
\[
|
||||
\forall \z_A, \z_B \in Z: \Big( \exists \alpha \in [0, 1]: (\alpha \z_A + (1-\alpha)\z_B) \in Z \Big)
|
||||
\forall \z_A, \z_B \in Z: \Big( \forall \alpha \in [0, 1]: (\alpha \z_A + (1-\alpha)\z_B) \in Z \Big)
|
||||
\]
|
||||
|
||||
\begin{figure}[H]
|
||||
@ -45,7 +45,7 @@
|
||||
\item[Convex function] \marginnote{Convex function}
|
||||
Given a convex set $Z \subseteq \mathbb{R}^d$, a function $l: Z \rightarrow \mathbb{R}$ is convex if it holds that:
|
||||
\[
|
||||
\forall \z_A, \z_B \in Z: \Big( \exists \alpha \in [0, 1]: l(\alpha \z_A + (1-\alpha) \z_B) \leq \alpha l(\z_A) + (1-\alpha) l(\z_B) \Big)
|
||||
\forall \z_A, \z_B \in Z: \Big( \forall \alpha \in [0, 1]: l(\alpha \z_A + (1-\alpha) \z_B) \leq \alpha l(\z_A) + (1-\alpha) l(\z_B) \Big)
|
||||
\]
|
||||
|
||||
\begin{figure}[H]
|
||||
@ -67,7 +67,7 @@
|
||||
Given a convex set $Z \subseteq \mathbb{R}^d$, a function $l: Z \rightarrow \mathbb{R}$ is strongly convex with parameter $\mu > 0$ if it holds that:
|
||||
\[
|
||||
\begin{split}
|
||||
\forall \z_A, \z_B \in Z, \z_A \neq \z_B: \Big( \exists \alpha \in (0, 1)&: l(\alpha \z_A + (1-\alpha) \z_B) < \\
|
||||
\forall \z_A, \z_B \in Z, \z_A \neq \z_B: \Big( \forall \alpha \in (0, 1)&: l(\alpha \z_A + (1-\alpha) \z_B) < \\
|
||||
&\alpha l(\z_A) + (1-\alpha) l(\z_B) - \frac{1}{2} \mu \alpha (1-\alpha) \Vert \z_A-\z_B \Vert^2 \Big)
|
||||
\end{split}
|
||||
\]
|
||||
|
||||
Reference in New Issue
Block a user