Fix typos

This commit is contained in:
2023-09-24 18:05:19 +02:00
parent 40090bfa77
commit 736ef14010
3 changed files with 52 additions and 47 deletions

View File

@ -16,7 +16,8 @@ A vector space has the following properties:
\item Addition is commutative and associative
\item A null vector exists: $\exists \nullvec \in V$ s.t. $\forall \vec{u} \in V: \nullvec + \vec{u} = \vec{u} + \nullvec = \vec{u}$
\item An identity element for scalar multiplication exists: $\forall \vec{u} \in V: 1\vec{u} = \vec{u}$
\item Each vector has its opposite: $\forall \vec{u} \in V, \exists \vec{a} \in V: \vec{a} + \vec{u} = \vec{u} + \vec{a} = \nullvec$
\item Each vector has its opposite: $\forall \vec{u} \in V, \exists \vec{a} \in V: \vec{a} + \vec{u} = \vec{u} + \vec{a} = \nullvec$.\\
$\vec{a}$ is denoted as $-\vec{u}$.
\item Distributive properties:
\[ \forall \alpha \in \mathbb{R}, \forall \vec{u}, \vec{w} \in V: \alpha(\vec{u} + \vec{w}) = \alpha \vec{u} + \alpha \vec{w} \]
\[ \forall \alpha, \beta \in \mathbb{R}, \forall \vec{u} \in V: (\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u} \]
@ -24,7 +25,7 @@ A vector space has the following properties:
\[ \forall \alpha, \beta \in \mathbb{R}, \forall \vec{u} \in V: (\alpha \beta)\vec{u} = \alpha (\beta \vec{u}) \]
\end{enumerate}
%
A subset $U \subseteq V$ of a vector space $V$, is a \textbf{subspace} iff $U$ is a vector space.
A subset $U \subseteq V$ of a vector space $V$ is a \textbf{subspace} iff $U$ is a vector space.
\marginnote{Subspace}
@ -95,7 +96,7 @@ The norm of a vector is a function: \marginnote{Vector norm}
such that for each $\lambda \in \mathbb{R}$ and $\vec{x}, \vec{y} \in \mathbb{R}^n$:
\begin{itemize}
\item $\Vert \vec{x} \Vert \geq 0$
\item $\Vert \vec{x} \Vert = 0 \iff \vec{x} = 0$
\item $\Vert \vec{x} \Vert = 0 \iff \vec{x} = \nullvec$
\item $\Vert \lambda \vec{x} \Vert = \vert \lambda \vert \cdot \Vert \vec{x} \Vert$
\item $\Vert \vec{x} + \vec{y} \Vert \leq \Vert \vec{x} \Vert + \Vert \vec{y} \Vert$
\end{itemize}
@ -110,7 +111,7 @@ Common norms are:
\end{descriptionlist}
%
In general, different norms tend to maintain the same proportion.
In some cases, unbalanced results may be given when comparing different norms.
In some cases, unbalanced results may be obtained when comparing different norms.
\begin{example}
Let $\vec{x} = (1, 1000)$ and $\vec{y} = (999, 1000)$. Their norms are:
\begin{center}
@ -130,7 +131,7 @@ The norm of a matrix is a function: \marginnote{Matrix norm}
such that for each $\lambda \in \mathbb{R}$ and $\matr{A}, \matr{B} \in \mathbb{R}^{m \times n}$:
\begin{itemize}
\item $\Vert \matr{A} \Vert \geq 0$
\item $\Vert \matr{A} \Vert = 0 \iff \matr{A} = \bar{0}$
\item $\Vert \matr{A} \Vert = 0 \iff \matr{A} = \matr{0}$
\item $\Vert \lambda \matr{A} \Vert = \vert \lambda \vert \cdot \Vert \matr{A} \Vert$
\item $\Vert \matr{A} + \matr{B} \Vert \leq \Vert \matr{A} \Vert + \Vert \matr{B} \Vert$
\end{itemize}
@ -141,7 +142,7 @@ Common norms are:
$\Vert \matr{A} \Vert_2 = \sqrt{ \rho(\matr{A}^T\matr{A}) }$,\\
where $\rho(\matr{X})$ is the largest absolute value of the eigenvalues of $\matr{X}$ (spectral radius).
\item[1-norm] $\Vert \matr{A} \Vert_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{m} \vert a_{i,j} \vert$
\item[1-norm] $\Vert \matr{A} \Vert_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{m} \vert a_{i,j} \vert$ (i.e. max sum of the columns in absolute value)
\item[Frobenius norm] $\Vert \matr{A} \Vert_F = \sqrt{ \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i,j}^2 }$
\end{descriptionlist}
@ -210,12 +211,12 @@ Common norms are:
\end{enumerate}
\item[Orthogonal basis] \marginnote{Orthogonal basis}
Given an $n$-dimensional vector space $V$ and a basis $\beta = \{ \vec{b}_1, \dots, \vec{b}_n \}$ of $V$.
Given a $n$-dimensional vector space $V$ and a basis $\beta = \{ \vec{b}_1, \dots, \vec{b}_n \}$ of $V$.
$\beta$ is an orthogonal basis if:
\[ \vec{b}_i \perp \vec{b}_j \text{ for } i \neq j \text{ (i.e.} \left\langle \vec{b}_i, \vec{b}_j \right\rangle = 0 \text{)} \]
\item[Orthonormal basis] \marginnote{Orthonormal basis}
Given an $n$-dimensional vector space $V$ and an orthogonal basis $\beta = \{ \vec{b}_1, \dots, \vec{b}_n \}$ of $V$.
Given a $n$-dimensional vector space $V$ and an orthogonal basis $\beta = \{ \vec{b}_1, \dots, \vec{b}_n \}$ of $V$.
$\beta$ is an orthonormal basis if:
\[ \Vert \vec{b}_i \Vert_2 = 1 \text{ (or} \left\langle \vec{b}_i, \vec{b}_i \right\rangle = 1 \text{)} \]
@ -267,7 +268,7 @@ and is found by minimizing the distance between $\pi_U(\vec{x})$ and $\vec{x}$.
Given a square matrix $\matr{A} \in \mathbb{R}^{n \times n}$,
$\lambda \in \mathbb{C}$ is an eigenvalue of $\matr{A}$ \marginnote{Eigenvalue}
with corresponding eigenvector $\vec{x} \in \mathbb{R}^n \smallsetminus \{ \nullvec \}$ if \marginnote{Eigenvector}
with corresponding eigenvector $\vec{x} \in \mathbb{R}^n \smallsetminus \{ \nullvec \}$ if: \marginnote{Eigenvector}
\[ \matr{A}\vec{x} = \lambda\vec{x} \]
It is equivalent to say that:
@ -295,7 +296,7 @@ we can prove that $\forall c \in \mathbb{R} \smallsetminus \{0\}:$ $c\vec{x}$ is
\begin{description}
\item[Eigenspace] \marginnote{Eigenspace}
Set of all the eigenvectors of $\matr{A} \in \mathbb{R}^{n \times n}$ associated to an eigenvalues $\lambda$.
Set of all the eigenvectors of $\matr{A} \in \mathbb{R}^{n \times n}$ associated to an eigenvalue $\lambda$.
This set is a subspace of $\mathbb{R}^n$.
\item[Eigenspectrum] \marginnote{Eigenspectrum}
@ -306,7 +307,7 @@ we can prove that $\forall c \in \mathbb{R} \smallsetminus \{0\}:$ $c\vec{x}$ is
\begin{description}
\item[Geometric multiplicity] \marginnote{Geometric multiplicity}
Given an eigenvalue $\lambda$ of a matrix $\matr{A} \in \mathbb{R}^{n \times n}$.
The geometric multiplicity of $\lambda$ is the number of linearly independent eigenvectors associated with $\lambda$.
The geometric multiplicity of $\lambda$ is the number of linearly independent eigenvectors associated to $\lambda$.
\end{description}