mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-17 20:01:51 +01:00
Fix typos
This commit is contained in:
@ -12,7 +12,7 @@
|
||||
Propagation of rounding errors in each step of an algorithm.
|
||||
|
||||
\item[Truncation error] \marginnote{Truncation error}
|
||||
Approximating an infinite procedure into a finite number of iterations.
|
||||
Approximating an infinite procedure to a finite number of iterations.
|
||||
|
||||
\item[Inherent error] \marginnote{Inherent error}
|
||||
Caused by the finite representation of the data (floating-point).
|
||||
@ -30,16 +30,16 @@
|
||||
Let $x$ be a value and $\hat{x}$ its approximation. Then:
|
||||
\begin{descriptionlist}
|
||||
\item[Absolute error]
|
||||
\begin{equation}
|
||||
\[
|
||||
E_{a} = \hat{x} - x
|
||||
\marginnote{Absolute error}
|
||||
\end{equation}
|
||||
\]
|
||||
Note that, out of context, the absolute error is meaningless.
|
||||
\item[Relative error]
|
||||
\begin{equation}
|
||||
\[
|
||||
E_{a} = \frac{\hat{x} - x}{x}
|
||||
\marginnote{Relative error}
|
||||
\end{equation}
|
||||
\]
|
||||
\end{descriptionlist}
|
||||
|
||||
|
||||
@ -48,9 +48,9 @@ Let $x$ be a value and $\hat{x}$ its approximation. Then:
|
||||
|
||||
Let $\beta \in \mathbb{N}_{> 1}$ be the base.
|
||||
Each $x \in \mathbb{R} \smallsetminus \{0\}$ can be uniquely represented as:
|
||||
\begin{equation} \label{eq:finnum_b_representation}
|
||||
x = \texttt{sign}(x) \cdot (d_1\beta^{-1} + d_2\beta^{-2} + \dots d_n\beta^{-n})\beta^p
|
||||
\end{equation}
|
||||
\[ \label{eq:finnum_b_representation}
|
||||
x = \texttt{sign}(x) \cdot (d_1\beta^{-1} + d_2\beta^{-2} + \dots + d_n\beta^{-n})\beta^p
|
||||
\]
|
||||
where:
|
||||
\begin{itemize}
|
||||
\item $0 \leq d_i \leq \beta-1$
|
||||
@ -59,9 +59,9 @@ where:
|
||||
\end{itemize}
|
||||
%
|
||||
\Cref{eq:finnum_b_representation} can be represented using the normalized scientific notation as: \marginnote{Normalized scientific notation}
|
||||
\begin{equation}
|
||||
\[
|
||||
x = \pm (0.d_1d_2\dots) \beta^p
|
||||
\end{equation}
|
||||
\]
|
||||
where $0.d_1d_2\dots$ is the \textbf{mantissa} and $\beta^p$ the \textbf{exponent}. \marginnote{Mantissa\\Exponent}
|
||||
|
||||
|
||||
@ -73,11 +73,13 @@ A floating-point system $\mathcal{F}(\beta, t, L, U)$ is defined by the paramete
|
||||
\item $t$: precision (number of digits in the mantissa)
|
||||
\item $[L, U]$: range of the exponent
|
||||
\end{itemize}
|
||||
%
|
||||
|
||||
Each $x \in \mathcal{F}(\beta, t, L, U)$ can be represented in its normalized form:
|
||||
\begin{eqnarray}
|
||||
x = \pm (0.d_1d_2 \dots d_t) \beta^p & L \leq p \leq U
|
||||
\end{eqnarray}
|
||||
We denote with $\texttt{fl}(x)$ the representation of $x \in \mathbb{R}$ in a given floating-point system.
|
||||
|
||||
\begin{example}
|
||||
In $\mathcal{F}(10, 5, -3, 3)$, $x=12.\bar{3}$ is represented as:
|
||||
\begin{equation*}
|
||||
@ -101,21 +103,20 @@ It must be noted that there is an underflow area around 0.
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Numbers representation}
|
||||
\subsection{Number representation}
|
||||
Given a floating-point system $\mathcal{F}(\beta, t, L, U)$, the representation of $x \in \mathbb{R}$ can result in:
|
||||
\begin{descriptionlist}
|
||||
\item[Exact representation]
|
||||
if $p \in [L, U]$ and $d_i=0$ for $i>t$.
|
||||
|
||||
\item[Approximation]
|
||||
\item[Approximation] \marginnote{Truncation\\Rounding}
|
||||
if $p \in [L, U]$ but $d_i$ may not be 0 for $i>t$.
|
||||
In this case, the representation is obtained by truncating or rounding the value.
|
||||
\marginnote{Truncation\\Rounding}
|
||||
|
||||
\item[Underflow]
|
||||
if $p < L$. In this case, the values is approximated as 0.
|
||||
\item[Underflow] \marginnote{Underflow}
|
||||
if $p < L$. In this case, the value is approximated to 0.
|
||||
|
||||
\item[Overflow]
|
||||
\item[Overflow] \marginnote{Overflow}
|
||||
if $p > U$. In this case, an exception is usually raised.
|
||||
\end{descriptionlist}
|
||||
|
||||
@ -179,16 +180,17 @@ Let:
|
||||
%
|
||||
To compute $x \oplus y$, a machine:
|
||||
\begin{enumerate}
|
||||
\item Calculates $x + y$ in a high precision register (still approximated, but more precise than the storing system)
|
||||
\item Calculates $x + y$ in a high precision register
|
||||
(still approximated, but more precise than the floating-point system used to store the result)
|
||||
\item Stores the result as $\texttt{fl}(x + y)$
|
||||
\end{enumerate}
|
||||
|
||||
A floating-point operation causes a small rounding error:
|
||||
\begin{equation}
|
||||
\[
|
||||
\left\vert \frac{(x \oplus y) - (x + y)}{x+y} \right\vert < \varepsilon_{\text{mach}}
|
||||
\end{equation}
|
||||
\]
|
||||
%
|
||||
Although, some operations may be subject to the \textbf{cancellation} problem which causes information loss.
|
||||
However, some operations may be subject to the \textbf{cancellation} problem which causes information loss.
|
||||
\marginnote{Cancellation}
|
||||
\begin{example}
|
||||
Given $x = 1$ and $y = 1 \cdot 10^{-16}$, we want to compute $x + y$ in $\mathcal{F}(10, 16, U, L)$.\\
|
||||
|
||||
Reference in New Issue
Block a user