mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Replaced examples with case study
This commit is contained in:
Binary file not shown.
|
Before Width: | Height: | Size: 2.5 MiB After Width: | Height: | Size: 2.6 MiB |
@ -90,13 +90,13 @@ There are two types of learning:
|
||||
\end{descriptionlist}
|
||||
|
||||
\begin{minipage}{0.55\linewidth}
|
||||
\begin{example}[Aplysia Californica]
|
||||
\begin{casestudy}[Aplysia Californica]
|
||||
An Aplysia Californica will withdraw its gill upon stimulating the siphon.
|
||||
\begin{itemize}
|
||||
\item Repeated mild stimulations will induce a habituation of the reflex.
|
||||
\item Repeated intense stimulations will induce a sensitization of the reflex.
|
||||
\end{itemize}
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
\centering
|
||||
@ -114,27 +114,23 @@ There is evidence that dopamine is involved in learning action-outcome associati
|
||||
When an unexpected event happens, there is a change in the activity of the striatum.
|
||||
There is an increase in response when the feedback is positive and a decrease when negative.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Microelectrodes in substantia nigra]
|
||||
\begin{casestudy}[Microelectrodes in substantia nigra]
|
||||
\phantom{}\\
|
||||
\begin{minipage}{0.7\linewidth}
|
||||
The activity of the substantia nigra of patients with Parkinson's disease is measured during a probabilistic instrumental learning task.
|
||||
The task consists of repeatedly drawing a card from two decks, followed by positive or negative feedback depending on the deck.
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.3\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=0.95\linewidth]{./img/instrumental_dopamine_sn1.png}
|
||||
\end{minipage}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\begin{subfigure}{0.25\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/instrumental_dopamine_sn1.png}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.55\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/instrumental_dopamine_sn2.png}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
|
||||
The increase and decrease in striatal activity can be clearly seen when the feedback is unexpected.
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
The increase and decrease in striatal activity can be clearly seen when the feedback is unexpected.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/instrumental_dopamine_sn2.png}
|
||||
\end{figure}
|
||||
\end{casestudy}
|
||||
|
||||
\item[Dopamine effect on behavior] \marginnote{Dopamine effect on behavior}
|
||||
The amount of dopamine changes the learning behavior:
|
||||
@ -146,68 +142,62 @@ There is evidence that dopamine is involved in learning action-outcome associati
|
||||
This happens because negative prediction errors cannot occur.
|
||||
\end{itemize}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Probabilistic selection task]
|
||||
This instrumental learning task has two phases:
|
||||
\begin{descriptionlist}
|
||||
\item[Learning]
|
||||
There are three pairs of stimuli (symbols) and, at each trial, a pair is presented to the participant who selects one.
|
||||
For each pair, a symbol has a higher probability of providing positive feedback while the other is more likely to be negative.
|
||||
Moreover, the probabilities are different among the three pairs.
|
||||
\begin{casestudy}[Probabilistic selection task]
|
||||
This instrumental learning task has two phases:
|
||||
\begin{descriptionlist}
|
||||
\item[Learning]
|
||||
There are three pairs of stimuli (symbols) and, at each trial, a pair is presented to the participant who selects one.
|
||||
For each pair, a symbol has a higher probability of providing positive feedback while the other is more likely to be negative.
|
||||
Moreover, the probabilities are different among the three pairs.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/instrumental_dopamine_selection1.png}
|
||||
\end{center}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/instrumental_dopamine_selection1.png}
|
||||
\end{center}
|
||||
|
||||
Participants are required to learn by trial and error the stimulus in each pair that leads to a positive reward.
|
||||
Note that learning could be accomplished by:
|
||||
\begin{itemize}
|
||||
\item Recognizing the more rewarding stimulus.
|
||||
\item Recognizing the less rewarding stimulus.
|
||||
\item Both.
|
||||
\end{itemize}
|
||||
Participants are required to learn by trial and error the stimulus in each pair that leads to a positive reward.
|
||||
Note that learning could be accomplished by:
|
||||
\begin{itemize}
|
||||
\item Recognizing the more rewarding stimulus.
|
||||
\item Recognizing the less rewarding stimulus.
|
||||
\item Both.
|
||||
\end{itemize}
|
||||
|
||||
\item[Testing]
|
||||
Aims to assess if participants learned to select positive feedback or avoid negative feedback.
|
||||
\item[Testing]
|
||||
Aims to assess if participants learned to select positive feedback or avoid negative feedback.
|
||||
|
||||
The same task as above is repeated but all combinations of the stimuli among the three pairs are possible.
|
||||
\end{descriptionlist}
|
||||
The same task as above is repeated but all combinations of the stimuli among the three pairs are possible.
|
||||
\end{descriptionlist}
|
||||
|
||||
Three groups of participants are considered for this experiment:
|
||||
\begin{enumerate}
|
||||
\item Those who took the cabergoline drug (dopamine antagonist).
|
||||
\item Those who took the haloperidol drug (dopamine agonist).
|
||||
\item Those who took a drug without effects (placebo).
|
||||
\end{enumerate}
|
||||
Three groups of participants are considered for this experiment:
|
||||
\begin{enumerate}
|
||||
\item Those who took the cabergoline drug (dopamine antagonist).
|
||||
\item Those who took the haloperidol drug (dopamine agonist).
|
||||
\item Those who took a drug without effects (placebo).
|
||||
\end{enumerate}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/instrumental_dopamine_selection2.png}
|
||||
\end{center}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/instrumental_dopamine_selection2.png}
|
||||
\end{center}
|
||||
|
||||
Results show that:
|
||||
\begin{enumerate}
|
||||
\item Cabergoline inhibited positive feedback learning.
|
||||
\item Haloperidol enhanced positive feedback learning.
|
||||
\item Placebo learned positive and negative feedback equally.
|
||||
\end{enumerate}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
Results show that:
|
||||
\begin{enumerate}
|
||||
\item Cabergoline inhibited positive feedback learning.
|
||||
\item Haloperidol enhanced positive feedback learning.
|
||||
\item Placebo learned positive and negative feedback equally.
|
||||
\end{enumerate}
|
||||
\end{casestudy}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}
|
||||
It has been observed that:
|
||||
\begin{itemize}
|
||||
\item Reward prediction errors are correlated with activity in the left posterior putamen and left ventral striatum.
|
||||
\item Punishment prediction errors are correlated with activity in the right anterior insula.
|
||||
\end{itemize}
|
||||
\begin{casestudy}
|
||||
It has been observed that:
|
||||
\begin{itemize}
|
||||
\item Reward prediction errors are correlated with activity in the left posterior putamen and left ventral striatum.
|
||||
\item Punishment prediction errors are correlated with activity in the right anterior insula.
|
||||
\end{itemize}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/pe_location.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/pe_location.png}
|
||||
\end{center}
|
||||
\end{casestudy}
|
||||
|
||||
\item[Actor-critic model] \marginnote{Actor-critic model}
|
||||
Model to correlate Pavlovian and instrumental learning.
|
||||
@ -227,20 +217,17 @@ There is evidence that dopamine is involved in learning action-outcome associati
|
||||
\end{itemize}
|
||||
\end{description}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Food and cocaine]
|
||||
\phantom{}
|
||||
\begin{itemize}
|
||||
\item Food-induced dopamine response is modulated by the reward expectations that promote learning until the prediction matches the actual outcome.
|
||||
\item Cocaine-induced dopamine response causes a continuous increase in the predicted reward that
|
||||
will eventually surpass all other cues and bias decision-making towards cocaine.
|
||||
\end{itemize}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{./img/dopamine_food_cocaine.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\begin{casestudy}[Food and cocaine]
|
||||
\phantom{}
|
||||
\begin{itemize}
|
||||
\item Food-induced dopamine response is modulated by the reward expectations that promote learning until the prediction matches the actual outcome.
|
||||
\item Cocaine-induced dopamine response causes a continuous increase in the predicted reward that
|
||||
will eventually surpass all other cues and bias decision-making towards cocaine.
|
||||
\end{itemize}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{./img/dopamine_food_cocaine.png}
|
||||
\end{center}
|
||||
\end{casestudy}
|
||||
|
||||
|
||||
|
||||
@ -451,7 +438,7 @@ Studied goal-directed and habitual behavior in humans.
|
||||
\end{itemize}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.95\linewidth]{./img/human_goal_directed_experiment3.png}
|
||||
\includegraphics[width=0.9\linewidth]{./img/human_goal_directed_experiment3.png}
|
||||
\end{figure}
|
||||
|
||||
During both training and testing, the fRMIs of the candidates were taken.
|
||||
|
||||
@ -59,7 +59,7 @@
|
||||
Study of the relationship between the physical brain and the intangible mind (thoughts, ideas).
|
||||
In other words, it studies the relationship between structure and function.
|
||||
|
||||
\begin{example}[Severed Corpus Callosum\footnote{\url{https://www.youtube.com/watch?v=lfGwsAdS9Dc}}]
|
||||
\begin{casestudy}[Severed Corpus Callosum\footnote{\url{https://www.youtube.com/watch?v=lfGwsAdS9Dc}}]
|
||||
Normally, the right and left hemispheres of the brain can communicate.
|
||||
Moreover, the left visual field is sent to the right hemisphere and
|
||||
the right visual field is sent to the left hemisphere.
|
||||
@ -67,7 +67,7 @@
|
||||
In patients where the hemispheres are split, a text shown on the right visual side is recognized as
|
||||
the speech capabilities are located in the left hemisphere,
|
||||
while a text shown on the left visual side does not trigger any speech reaction.
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
\end{description}
|
||||
|
||||
|
||||
|
||||
@ -475,7 +475,7 @@ In a neuron, there are four regions that handle signals:
|
||||
|
||||
|
||||
|
||||
\begin{example}[Knee-jerk reflex]
|
||||
\begin{casestudy}[Knee-jerk reflex]
|
||||
By tapping the patellar tendon (below the kneecap), the following happens:
|
||||
\begin{enumerate}
|
||||
\item The sensory information is conveyed from the muscle to the spinal cord (central nervous system).
|
||||
@ -486,7 +486,7 @@ In a neuron, there are four regions that handle signals:
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\textwidth]{./img/knee_jerk.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
|
||||
|
||||
\section{Neural system}
|
||||
|
||||
@ -90,7 +90,7 @@ There are two types of learning:
|
||||
A new stimulus that is similar to a learned \acl{cs} can elicit a \acl{cr}.
|
||||
\end{description}
|
||||
|
||||
\begin{example}[Aplysia Californica] \phantom{}\\
|
||||
\begin{casestudy}[Aplysia Californica] \phantom{}\\
|
||||
\begin{minipage}{0.8\linewidth}
|
||||
\begin{enumerate}
|
||||
\item Before conditioning, a stimulus to the siphon of an aplysia californica results in a weak withdrawal of the gill.
|
||||
@ -117,7 +117,7 @@ There are two types of learning:
|
||||
\includegraphics[width=0.3\linewidth]{./img/gill_pavlovian_graph.png}
|
||||
\caption{Withdrawal response decay}
|
||||
\end{figure}
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
|
||||
\begin{remark} \marginnote{Amygdala in Pavlovian learning}
|
||||
In mammals, aversive Pavlovian conditioning involves the amygdala.
|
||||
@ -161,10 +161,10 @@ Once reactivated, the subsequent reconsolidation phase might store a modified ve
|
||||
On the other hand, a damaged hippocampus results in patients that present a \ac{cr} without recognizing the \ac{cs}.
|
||||
\end{remark}
|
||||
|
||||
\begin{example}[Reconsolidation disruption]
|
||||
\begin{casestudy}[Reconsolidation disruption]
|
||||
Propranolol is a drug that disrupts amygdala-specific memory reconsolidation (i.e. the physiological response).
|
||||
A possible therapy to suppress a phobia is to trigger the fear memory and then administer propranolol to prevent its reconsolidation.
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
|
||||
|
||||
|
||||
@ -195,7 +195,7 @@ Depending on when the \ac{cs} and \ac{us} are presented, conditioning can be:
|
||||
\end{figure}
|
||||
\end{descriptionlist}
|
||||
|
||||
\begin{example}
|
||||
\begin{casestudy}
|
||||
Two groups of rats were exposed to a 6 seconds tone (\ac{cs}) followed by food delivery (\ac{us}) with a delay of:
|
||||
\begin{itemize}
|
||||
\item 6 seconds (red).
|
||||
@ -207,7 +207,7 @@ Depending on when the \ac{cs} and \ac{us} are presented, conditioning can be:
|
||||
\includegraphics[width=0.55\linewidth]{./img/contiguity_rats.png}
|
||||
\caption{Number of entries (i.e. the rat checks the food tray) per second}
|
||||
\end{figure}
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
|
||||
|
||||
\subsection{Contingency}
|
||||
@ -227,7 +227,7 @@ Causal relationship between the \acl{cs} and the \acl{us}.
|
||||
\caption{Example of contingent and random group}
|
||||
\end{figure}
|
||||
|
||||
\begin{example}
|
||||
\begin{casestudy}
|
||||
Two groups of rats are exposed to a shock paired with a bell ring.
|
||||
Contiguity is the same but contingency differs.
|
||||
|
||||
@ -238,7 +238,7 @@ Causal relationship between the \acl{cs} and the \acl{us}.
|
||||
\includegraphics[width=0.8\linewidth]{./img/contingency_rats.png}
|
||||
\caption{Representation of the experiment}
|
||||
\end{figure}
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
|
||||
|
||||
\subsection{Surprise}
|
||||
@ -258,7 +258,7 @@ Causal relationship between the \acl{cs} and the \acl{us}.
|
||||
\caption{Learning outcome due to surprise}
|
||||
\end{figure}
|
||||
|
||||
\begin{example}[Blocking effect]
|
||||
\begin{casestudy}[Blocking effect]
|
||||
\phantom{} \label{ex:blocking} \\
|
||||
\begin{minipage}{0.65\linewidth}
|
||||
\begin{enumerate}
|
||||
@ -275,7 +275,7 @@ Causal relationship between the \acl{cs} and the \acl{us}.
|
||||
\includegraphics[width=\linewidth]{./img/surprise_rats.png}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
|
||||
|
||||
|
||||
@ -353,7 +353,7 @@ The prediction error is computed as follows\footnote{\url{https://pubmed.ncbi.nl
|
||||
|
||||
In other words, the value signal produced by the reward (\ac{us}) is transferred back to an event (\ac{cs}) that predicts the reward.
|
||||
|
||||
\begin{example}[Second-order conditioning]
|
||||
\begin{casestudy}[Second-order conditioning]
|
||||
Pairing a new \ac{cs} to an existing \ac{cs}.
|
||||
|
||||
\begin{center}
|
||||
@ -364,7 +364,7 @@ In other words, the value signal produced by the reward (\ac{us}) is transferred
|
||||
The Rescorla-Wagner model is not capable of modeling second-order conditioning while
|
||||
the temporal difference model is.
|
||||
\end{remark}
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
|
||||
|
||||
|
||||
@ -376,70 +376,55 @@ There is strong evidence that the dopaminergic system is the major neural mechan
|
||||
\item[Response to unexpected rewards] \marginnote{Dopamine response to unexpected rewards}
|
||||
Dopaminergic neurons exhibit a strong phasic response in the presence of an unexpected reward.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey that touches food]
|
||||
Some food is put in a box with a hole to reach its content.
|
||||
In the absence of any other stimuli predicting the reward,
|
||||
a monkey presents a high dopaminergic response when it touches the food.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/dopamine_monkey1.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\begin{casestudy}[Monkey that touches food]
|
||||
Some food is put in a box with a hole to reach its content.
|
||||
In the absence of any other stimuli predicting the reward,
|
||||
a monkey presents a high dopaminergic response when it touches the food.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/dopamine_monkey1.png}
|
||||
\end{center}
|
||||
\end{casestudy}
|
||||
|
||||
\item[Reward discrimination] \marginnote{Dopamine reward discrimination}
|
||||
Dopamine neurons respond differently depending on the actual presence of a reward.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey that touches food]
|
||||
The dopaminergic response of a monkey that touches an apple attached to a wire in a box is different
|
||||
from the response of only touching the wire.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/dopamine_monkey2.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\begin{casestudy}[Monkey that touches food]
|
||||
The dopaminergic response of a monkey that touches an apple attached to a wire in a box is different
|
||||
from the response of only touching the wire.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/dopamine_monkey2.png}
|
||||
\end{center}
|
||||
\end{casestudy}
|
||||
|
||||
\item[Magnitude discrimination] \marginnote{Dopamine magnitude discrimination}
|
||||
Dopamine neurons respond differently depending on the amount of reward received.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey that drinks]
|
||||
By giving a monkey different amounts of fruit juice in a pseudorandom order,
|
||||
its dopaminergic response is stronger for the highest volume and weaker for the lowest volume.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.7\linewidth]{./img/dopamine_monkey3.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\begin{casestudy}[Monkey that drinks]
|
||||
By giving a monkey different amounts of fruit juice in a pseudorandom order,
|
||||
its dopaminergic response is stronger for the highest volume and weaker for the lowest volume.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.7\linewidth]{./img/dopamine_monkey3.png}
|
||||
\end{center}
|
||||
\end{casestudy}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey with juice and images]
|
||||
Using different \acp{cs}, it can be seen that the dopaminergic response differs based on the amount of reward.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/dopamine_expected.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\begin{casestudy}[Monkey with juice and images]
|
||||
Using different \acp{cs}, it can be seen that the dopaminergic response differs based on the amount of reward.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/dopamine_expected.png}
|
||||
\end{center}
|
||||
\end{casestudy}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey with juice and images]
|
||||
After learning the association between a \ac{cs} and \ac{us} (middle graph), a change in the amount of the reward changes the dopaminergic response.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.6\linewidth]{./img/dopamine_expected2.png}
|
||||
\end{center}
|
||||
\begin{casestudy}[Monkey with juice and images]
|
||||
After learning the association between a \ac{cs} and \ac{us} (middle graph), a change in the amount of the reward changes the dopaminergic response.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.6\linewidth]{./img/dopamine_expected2.png}
|
||||
\end{center}
|
||||
|
||||
This behavior also involves the context (i.e. the \ac{cs} image that is shown).
|
||||
\begin{center}
|
||||
\includegraphics[width=0.6\linewidth]{./img/dopamine_expected3.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
This behavior also involves the context (i.e. the \ac{cs} image that is shown).
|
||||
\begin{center}
|
||||
\includegraphics[width=0.6\linewidth]{./img/dopamine_expected3.png}
|
||||
\end{center}
|
||||
\end{casestudy}
|
||||
\end{description}
|
||||
|
||||
\begin{remark}
|
||||
@ -464,20 +449,17 @@ There is strong evidence that the dopaminergic system is the major neural mechan
|
||||
\item[Response to blocking] \marginnote{Dopamine response to blocking}
|
||||
Dopaminergic response is in line with the blocking effect.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey with food and images]
|
||||
\phantom{}\\
|
||||
\begin{minipage}{0.7\linewidth}
|
||||
A monkey is taught to associate images with food.
|
||||
A new \ac{cs} alongside an existing \ac{cs} will not be learned.
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.28\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/dopamine_blocking.png}
|
||||
\end{minipage}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\begin{casestudy}[Monkey with food and images]
|
||||
\phantom{}\\
|
||||
\begin{minipage}{0.7\linewidth}
|
||||
A monkey is taught to associate images with food.
|
||||
A new \ac{cs} alongside an existing \ac{cs} will not be learned.
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.28\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/dopamine_blocking.png}
|
||||
\end{minipage}
|
||||
\end{casestudy}
|
||||
|
||||
\item[Probability encoding] \marginnote{Dopamine probability encoding}
|
||||
The phasic activation of dopamine neurons varies monotonically with the reward probability
|
||||
@ -489,16 +471,13 @@ There is strong evidence that the dopaminergic system is the major neural mechan
|
||||
Dopamine response to unexpectedness also involves timing.
|
||||
A dopaminergic response occurs when a reward is given earlier or later than expected.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}
|
||||
After learning that a reward occurs 1 second after the end of the \ac{cs},
|
||||
dopamine neurons fire if the timing changes.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/dopamine_timing.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\begin{casestudy}
|
||||
After learning that a reward occurs 1 second after the end of the \ac{cs},
|
||||
dopamine neurons fire if the timing changes.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/dopamine_timing.png}
|
||||
\end{center}
|
||||
\end{casestudy}
|
||||
\end{description}
|
||||
|
||||
\begin{remark}
|
||||
|
||||
@ -138,10 +138,10 @@
|
||||
only useful changes will last.
|
||||
\end{remark}
|
||||
|
||||
\begin{example}[Phantom limb pain]
|
||||
\begin{casestudy}[Phantom limb pain]
|
||||
In amputees, the area of the brain responsible for the missing part of the body is overrun by the neighboring sections.
|
||||
In the case of an arm, the area responsible for the face might "conquer" what once was the area of the arm.
|
||||
\end{example}
|
||||
\end{casestudy}
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user