Add FAIKR2 ontologies

This commit is contained in:
2023-11-22 22:02:47 +01:00
parent 1e498f547b
commit 62caefa927
2 changed files with 164 additions and 0 deletions

View File

@ -7,5 +7,6 @@
\makenotesfront
\input{sections/_logic.tex}
\input{sections/_ontoligies.tex}
\end{document}

View File

@ -0,0 +1,163 @@
\chapter{Ontologies}
\begin{description}
\item[Ontology] \marginnote{Ontology}
Formal (non-ambiguous) and explicit (obtainable through a finite sound procedure)
description of a domain.
\item[Category] \marginnote{Category}
Can be organized hierarchically on different levels of generality.
\item[Object] \marginnote{Object}
Belongs to one or more categories.
\item[Upper/general ontology] \marginnote{Upper/general ontology}
Ontology focused on the most general domain.
Properties:
\begin{itemize}
\item Should be applicable to almost any special domain.
\item Combining general concepts should not incur in inconsistences.
\end{itemize}
Approaches to create ontologies:
\begin{itemize}
\item Created by philosophers/logicians/researchers.
\item Automatic knowledge extraction from well-structured databases.
\item Created from text documents (e.g. web).
\item Crowd-sharing information.
\end{itemize}
\end{description}
\section{Categories}
\begin{description}
\item[Category] \marginnote{Category}
Used in human reasoning when the goal is category-driven (in contrast to specific-instance-driven).
In first order logic, categories can be represented through:
\begin{descriptionlist}
\item[Predicate] \marginnote{Predicate categories}
A predicate to tell if an object belongs to a category
(e.g. \texttt{Car(c1)} indicates that \texttt{c1} is a car).
\item[Reification] \marginnote{Reification}
Represent categories as objects as well (e.g. $\texttt{c1} \in \texttt{Car}$).
\end{descriptionlist}
\end{description}
\subsection{Reification properties and operations}
\begin{description}
\item[Membership] \marginnote{Membership}
Indicates if an object belongs to a category.
(e.g. $\texttt{c1} \in \texttt{Car}$).
\item[Subclass] \marginnote{Subclass}
Indicates if a category is a subcategory of another one.
(e.g. $\texttt{Car} \subset \texttt{Vehicle}$).
\item[Necessity] \marginnote{Necessity}
Members of a category enjoy some properties
(e.g. $(\text{x} \in \texttt{Car}) \rightarrow \texttt{hasWheels(x)}$).
\item[Sufficiency] \marginnote{Sufficiency}
Sufficient conditions to be part of a category\\
(e.g. $\texttt{hasPlate(x)} \land \texttt{hasWheels(x)} \rightarrow \texttt{x} \in \texttt{Car}$).
\item[Category-level properties] \marginnote{Category-level properties}
Category themselves can enjoy properties\\
(e.g. $\texttt{Car} \in \texttt{VehicleType}$)
\item[Disjointness] \marginnote{Disjointness}
Given a set of categories $S$, the categories in $S$ are disjoint iff they all have different objects:
\[ \texttt{disjoint($S$)} \iff (\forall c_1, c_2 \in S, c_1 \neq c_2 \rightarrow c_1 \cap c_2 = \emptyset) \]
\item[Exhaustive decomposition] \marginnote{Exhaustive decomposition}
Given a category $c$ and a set of categories $S$, $S$ is an exhaustive decomposition of $c$ iff
any element in $c$ belongs to at least a category in $S$:
\[ \texttt{exhaustiveDecomposition($S$, $c$)} \iff (\forall o \in c \iff \exists c_2 \in S: o \in c_2) \]
\item[Partition] \marginnote{Partition}
Given a category $c$ and a set of categories $S$, $S$ is a partition of $c$ when:
\[ \texttt{partition($S$, $c$)} \iff \texttt{disjoint($S$)} \land \texttt{exhaustiveDecomposition($S$, $c$)} \]
\end{description}
\subsection{Physical composition}
Objects (meronyms) are part of a whole (holonym).
\begin{description}
\item[Part-of] \marginnote{Part-of}
If the objects have a structural relation (e.g. $\texttt{partOf(cylinder1, engine1)}$).
Properties:
\begin{descriptionlist}
\item[Transitivity] $\texttt{partOf(x, y)} \land \texttt{partOf(y, z)} \rightarrow \texttt{partOf(x, z)}$
\item[Reflexivity] $\texttt{partOf(x, x)}$
\end{descriptionlist}
\item[Bunch-of] \marginnote{Bunch-of}
If the objects do not have a structural relation.
Useful to define a composition of countable objects
(e.g. $\texttt{bunchOf({nail1, nail3, nail4})}$).
\end{description}
\subsection{Measures}
A property of objects.
\begin{description}
\item[Quantitative measure] \marginnote{Quantitative measure}
Something that can be measured using some unit\\
(e.g. $\texttt{length(table1)} = \texttt{cm(80)}$).
Qualitative measures propagate when using \texttt{partOf} or \texttt{bunchOf}
(e.g. the weight of a car is the sum of its parts).
\item[Qualitative measure] \marginnote{Qualitative measure}
Something that can be measured using terms with a partial or total order relation
(e.g. $\{ \texttt{good}, \texttt{neutral}, \texttt{bad} \}$).
Qualitative measures do not propagate when using \texttt{partOf} or \texttt{bunchOf}.
\item[Fuzzy logic] \marginnote{Fuzzy logic}
Provides a semantics to qualitative measures (i.e. convert qualitative to quantitative).
\end{description}
\subsection{Things vs stuff}
\begin{description}
\item[Intrinsic property] \marginnote{Intrinsic property}
Related to the substance of the object. It is retained when the object is divided
(e.g. water boils at 100°C).
\item[Extrinsic property] \marginnote{Extrinsic property}
Related to the structure of the object. It is not retained when the object is divided
(e.g. the weight of an object changes when split).
\item[Substance] \marginnote{Substance}
Category of objects with only intrinsic properties.
\begin{description}
\item[Stuff] \marginnote{Stuff}
The most general substance category.
\end{description}
\item[Count noun] \marginnote{Count noun}
Category of objects with only extrinsic properties.
\begin{description}
\item[Things] \marginnote{Things}
The most general object category.
\end{description}
\end{description}
\section{Semantic networks}
\section{Frames}