From 9e8675ab9da7fecd5677d37a1c1359058686aa9a Mon Sep 17 00:00:00 2001 From: Luca Domeniconi <34924739+liuktc@users.noreply.github.com> Date: Sun, 27 Oct 2024 17:14:34 +0100 Subject: [PATCH] Update _rnn.tex --- src/year2/natural-language-processing/sections/_rnn.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/year2/natural-language-processing/sections/_rnn.tex b/src/year2/natural-language-processing/sections/_rnn.tex index 50e5304..cc4f212 100644 --- a/src/year2/natural-language-processing/sections/_rnn.tex +++ b/src/year2/natural-language-processing/sections/_rnn.tex @@ -39,7 +39,7 @@ \begin{description} \item[Training] Given the predicted distribution $\hat{\vec{y}}^{(t)}$ and ground-truth $\vec{y}^{(t)}$ at step $t$, the loss is computed as the cross-entropy: - \[ \mathcal{L}^{(t)}(\matr{\theta}) = - \sum_{v \in V} \vec{y}_v^{(t)} \log\left( \hat{\vec{y}}_w^{(t)} \right) \] + \[ \mathcal{L}^{(t)}(\matr{\theta}) = - \sum_{v \in V} \vec{y}_v^{(t)} \log\left( \hat{\vec{y}}_v^{(t)} \right) \] \begin{description} \item[Teacher forcing] \marginnote{Teacher forcing} @@ -68,4 +68,4 @@ \item[Greedy] Select the token with the highest probability. \item[Sampling] Randomly sample the token following the probabilities of the output distribution. \end{descriptionlist} -\end{description} \ No newline at end of file +\end{description}