mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-15 11:02:21 +01:00
Add SMM SVD matrix representation
This commit is contained in:
@ -19,17 +19,35 @@ The singular value decomposition (SVD) of $\matr{A}$ is always possible and has
|
|||||||
\[
|
\[
|
||||||
\matr{A} = \matr{U}\matr{\Sigma}\matr{V}^T
|
\matr{A} = \matr{U}\matr{\Sigma}\matr{V}^T
|
||||||
\]
|
\]
|
||||||
|
\[
|
||||||
|
=
|
||||||
|
\begin{pmatrix}
|
||||||
|
\begin{pmatrix} \\ \vec{u}_1 \\ \\ \end{pmatrix} &
|
||||||
|
\dots &
|
||||||
|
\begin{pmatrix} \\ \vec{u}_m \\ \\ \end{pmatrix}
|
||||||
|
\end{pmatrix}
|
||||||
|
\begin{pmatrix}
|
||||||
|
\sigma_1 & 0 & 0 \\
|
||||||
|
0 & \ddots & 0 \\
|
||||||
|
0 & 0 & \sigma_{\min\{m, n\}} \\
|
||||||
|
\end{pmatrix}
|
||||||
|
\begin{pmatrix}
|
||||||
|
\begin{pmatrix} & \vec{v}_1 & \end{pmatrix} \\
|
||||||
|
\vdots \\
|
||||||
|
\begin{pmatrix} & \vec{v}_n & \end{pmatrix} \\
|
||||||
|
\end{pmatrix}
|
||||||
|
\]
|
||||||
where:
|
where:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item
|
\item
|
||||||
$\matr{U} \in \mathbb{R}^{m \times m}$ is an orthogonal matrix with columns $\vec{u}_i$ called left-singular vectors.
|
$\matr{U} \in \mathbb{R}^{m \times m}$ is an orthogonal matrix with columns $\vec{u}_i$ called left-singular vectors.
|
||||||
|
|
||||||
\item
|
\item
|
||||||
$\matr{\Sigma} \in \mathbb{R}^{m \times n}$ is an orthogonal matrix with columns $\vec{v}_i$ called right-singular vectors.
|
$\matr{V} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix with columns $\vec{v}_i$ called right-singular vectors.
|
||||||
|
|
||||||
\item
|
\item
|
||||||
$\matr{V} \in \mathbb{R}^{n \times n}$ is a matrix with $\matr{\Sigma}_{i,j} = 0$ (i.e. diagonal if it was a square matrix) and
|
$\matr{\Sigma} \in \mathbb{R}^{m \times n}$ is a matrix with $\matr{\Sigma}_{i,j} = 0$ (i.e. diagonal if it was a square matrix) and
|
||||||
the singular values $\sigma_i, i = 1 \dots r$ on the diagonal.
|
the singular values $\sigma_i, i = 1 \dots \min\{m, n\}$ on the diagonal.
|
||||||
By convention $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r \geq 0$.
|
By convention $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r \geq 0$.
|
||||||
Note that singular values $\sigma_j = 0$ for $(r + 1) \leq j \leq n$.
|
Note that singular values $\sigma_j = 0$ for $(r + 1) \leq j \leq n$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|||||||
Reference in New Issue
Block a user