Add SMM SVD matrix representation

This commit is contained in:
2023-09-30 20:32:50 +02:00
parent 0843e58c57
commit 55fb93cb6b

View File

@ -19,17 +19,35 @@ The singular value decomposition (SVD) of $\matr{A}$ is always possible and has
\[
\matr{A} = \matr{U}\matr{\Sigma}\matr{V}^T
\]
\[
=
\begin{pmatrix}
\begin{pmatrix} \\ \vec{u}_1 \\ \\ \end{pmatrix} &
\dots &
\begin{pmatrix} \\ \vec{u}_m \\ \\ \end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
\sigma_1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \sigma_{\min\{m, n\}} \\
\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix} & \vec{v}_1 & \end{pmatrix} \\
\vdots \\
\begin{pmatrix} & \vec{v}_n & \end{pmatrix} \\
\end{pmatrix}
\]
where:
\begin{itemize}
\item
$\matr{U} \in \mathbb{R}^{m \times m}$ is an orthogonal matrix with columns $\vec{u}_i$ called left-singular vectors.
\item
$\matr{\Sigma} \in \mathbb{R}^{m \times n}$ is an orthogonal matrix with columns $\vec{v}_i$ called right-singular vectors.
$\matr{V} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix with columns $\vec{v}_i$ called right-singular vectors.
\item
$\matr{V} \in \mathbb{R}^{n \times n}$ is a matrix with $\matr{\Sigma}_{i,j} = 0$ (i.e. diagonal if it was a square matrix) and
the singular values $\sigma_i, i = 1 \dots r$ on the diagonal.
$\matr{\Sigma} \in \mathbb{R}^{m \times n}$ is a matrix with $\matr{\Sigma}_{i,j} = 0$ (i.e. diagonal if it was a square matrix) and
the singular values $\sigma_i, i = 1 \dots \min\{m, n\}$ on the diagonal.
By convention $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r \geq 0$.
Note that singular values $\sigma_j = 0$ for $(r + 1) \leq j \leq n$.
\end{itemize}