mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-15 02:52:22 +01:00
Add FAIKR3 probability
This commit is contained in:
@ -1 +1,133 @@
|
||||
\chapter{Introduction}
|
||||
|
||||
|
||||
\section{Uncertainty}
|
||||
\begin{description}
|
||||
\item[Uncertainty] \marginnote{Uncertainty}
|
||||
A task is uncertain if we have:
|
||||
\begin{itemize}
|
||||
\item Partial observations
|
||||
\item Noisy or wrong information
|
||||
\item Uncertain action outcomes
|
||||
\item Complex models
|
||||
\end{itemize}
|
||||
|
||||
A purely logic approach leads to:
|
||||
\begin{itemize}
|
||||
\item Risks falsehood: unreasonable conclusion when applied in practice.
|
||||
\item Weak decisions: too many conditions required to make a conclusion.
|
||||
\end{itemize}
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Handling uncertainty}
|
||||
\begin{descriptionlist}
|
||||
\item[Default/nonmonotonic logic] \marginnote{Default/nonmonotonic logic}
|
||||
Works on assumptions.
|
||||
An assumption can be contradicted by an evidence.
|
||||
|
||||
\item[Rule-based systems with fudge factors] \marginnote{Rule-based systems with fudge factors}
|
||||
Formulated as premise $\rightarrow_\text{prob.}$ effect.
|
||||
Have the following issues:
|
||||
\begin{itemize}
|
||||
\item Locality: how can the probability account all the evidence.
|
||||
\item Combination: chaining of unrelated concepts.
|
||||
\end{itemize}
|
||||
|
||||
\item[Probability] \marginnote{Probability}
|
||||
Assign a probability given the available known evidence.
|
||||
|
||||
Note: fuzzy logic handles the degree of truth and not the uncertainty.
|
||||
\end{descriptionlist}
|
||||
|
||||
\begin{description}
|
||||
\item[Decision theory] \marginnote{Decision theory}
|
||||
Defined as:
|
||||
\[ \text{Decision theory} = \text{Utility theory} + \text{Probability theory} \]
|
||||
where the utility theory depends on one's preferences.
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Probability}
|
||||
|
||||
\begin{description}
|
||||
\item[Sample space] \marginnote{Sample space}
|
||||
Set $\Omega$ of all possible worlds.
|
||||
\begin{descriptionlist}
|
||||
\item[Event] \marginnote{Event}
|
||||
Subset $A \subseteq \Omega$.
|
||||
\item[Sample point/Possible world/Atomic event] \marginnote{Sample point}
|
||||
Element $\omega \in \Omega$.
|
||||
\end{descriptionlist}
|
||||
|
||||
\item[Probability space] \marginnote{Probability space}
|
||||
A probability space/model is a function $\prob{\cdot}: \Omega \rightarrow [0, 1]$ assigned to a sample space such that:
|
||||
\begin{itemize}
|
||||
\item $0 \leq \prob{\omega} \leq 1$
|
||||
\item $\sum_{\omega \in \Omega} \prob{\omega} = 1$
|
||||
\item $\prob{A} = \sum_{\omega \in A} \prob{\omega}$
|
||||
\end{itemize}
|
||||
|
||||
\item[Random variable] \marginnote{Random variable}
|
||||
A function from an event to some range (e.g. reals, booleans, \dots).
|
||||
|
||||
\item[Probability distribution] \marginnote{Probability distribution}
|
||||
For any random variable $X$:
|
||||
\[ \prob{X = x_i} = \sum_{\omega \text{ st } X(\omega)=x_i} \prob{\omega} \]
|
||||
|
||||
\item[Proposition] \marginnote{Proposition}
|
||||
Event where a random variable has a certain value.
|
||||
\[ a = \{ \omega \,\vert\, A(\omega) = \texttt{true} \} \]
|
||||
\[ \lnot a = \{ \omega \,\vert\, A(\omega) = \texttt{false} \} \]
|
||||
\[ (\texttt{Weather} = \texttt{rain}) = \{ \omega \,\vert\, B(\omega) = \texttt{rain} \} \]
|
||||
|
||||
\item[Prior probability] \marginnote{Prior probability}
|
||||
Prior/unconditional probability of a proposition based on known evidence.
|
||||
|
||||
\item[Probability distribution (all)] \marginnote{Probability distribution (all)}
|
||||
Gives all the probabilities of a random variable.
|
||||
\[ \textbf{P}(A) = \langle \prob{A=a_1}, \dots, \prob{A=a_n} \rangle \]
|
||||
|
||||
\item[Joint probability distribution] \marginnote{Joint probability distribution}
|
||||
The joint probability distribution of a set of random variables gives
|
||||
the probability of all the different combinations of their atomic events.
|
||||
|
||||
Note: Every question on a domain can, in theory, be answered using the joint distribution.
|
||||
In practice, it is hard to apply.
|
||||
|
||||
\begin{example}
|
||||
$\textbf{P}(\texttt{Weather}, \texttt{Cavity}) = $
|
||||
\begin{center}
|
||||
\small
|
||||
\begin{tabular}{c | cccc}
|
||||
& \texttt{Weather=sunny} & \texttt{Weather=rain} & \texttt{Weather=cloudy} & \texttt{Weather=snow} \\
|
||||
\hline
|
||||
\texttt{Cavity=true} & 0.144 & 0.02 & 0.016 & 0.02 \\
|
||||
\texttt{Cavity=false} & 0.576 & 0.08 & 0.064 & 0.08
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{example}
|
||||
|
||||
\item[Probability density function] \marginnote{Probability density function}
|
||||
The probability density function (PDF) of a random variable $X$ is a function $p: \mathbb{R} \rightarrow \mathbb{R}$
|
||||
such that:
|
||||
\[ \int_{\mathcal{T}_X} p(x) \,dx = 1 \]
|
||||
\begin{descriptionlist}
|
||||
\item[Uniform distribution] \marginnote{Uniform distribution}
|
||||
\[
|
||||
p(x) = \text{Unif}[a, b](x) =
|
||||
\begin{cases}
|
||||
\frac{1}{b-a} & a \leq x \leq b \\
|
||||
0 & \text{otherwise}
|
||||
\end{cases}
|
||||
\]
|
||||
\item[Gaussian (normal) distribution] \marginnote{Gaussian (normal) distribution}
|
||||
\[ \mathcal{N}(\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}} \]
|
||||
|
||||
$\mathcal{N}(0, 1)$ is the standard gaussian.
|
||||
\end{descriptionlist}
|
||||
|
||||
\item[Conditional probability] \marginnote{Conditional probability}
|
||||
Probability of a prior knowledge with new evidence:
|
||||
\[ \prob{a \vert b} = \frac{\prob{a \land b}}{\prob{b}} \]
|
||||
\end{description}
|
||||
Reference in New Issue
Block a user