mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-16 11:31:49 +01:00
Add SMM SVD
This commit is contained in:
@ -209,6 +209,7 @@ Common norms are:
|
||||
\frac{\vec{x}^T\vec{y}}{\Vert \vec{x} \Vert \cdot \Vert \vec{y} \Vert}
|
||||
\]
|
||||
\end{enumerate}
|
||||
Note: an orthogonal matrix represents a rotation.
|
||||
|
||||
\item[Orthogonal basis] \marginnote{Orthogonal basis}
|
||||
Given a $n$-dimensional vector space $V$ and a basis $\beta = \{ \vec{b}_1, \dots, \vec{b}_n \}$ of $V$.
|
||||
@ -338,15 +339,6 @@ A matrix $\matr{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is simil
|
||||
Similar matrices have the same eigenvalues.
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem}[Eigendecomposition] \marginnote{Eigendecomposition}
|
||||
Given a matrix $\matr{A} \in \mathbb{R}^{n \times n}$.
|
||||
If the eigenvectors of $\matr{A}$ form a basis of $\mathbb{R}^n$,
|
||||
then $\matr{A} \in \mathbb{R}^{n \times n}$ can be decomposed into:
|
||||
\[ \matr{A} = \matr{P}\matr{D}\matr{P}^{-1} \]
|
||||
where $\matr{P} \in \mathbb{R}^{n \times n}$ contains the eigenvectors of $\matr{A}$ as its columns and
|
||||
$\matr{D}$ is a diagonal matrix whose diagonal contains the eigenvalues of $\matr{A}$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem} \marginnote{Symmetric matrix diagonalizability}
|
||||
A symmetric matrix $\matr{A} \in \mathbb{R}^{n \times n}$ is always diagonalizable.
|
||||
\end{theorem}
|
||||
Reference in New Issue
Block a user