Add SMM SVD

This commit is contained in:
2023-09-25 21:54:26 +02:00
parent c8fcdda3cc
commit 4358e7f408
3 changed files with 134 additions and 11 deletions

View File

@ -209,6 +209,7 @@ Common norms are:
\frac{\vec{x}^T\vec{y}}{\Vert \vec{x} \Vert \cdot \Vert \vec{y} \Vert}
\]
\end{enumerate}
Note: an orthogonal matrix represents a rotation.
\item[Orthogonal basis] \marginnote{Orthogonal basis}
Given a $n$-dimensional vector space $V$ and a basis $\beta = \{ \vec{b}_1, \dots, \vec{b}_n \}$ of $V$.
@ -338,15 +339,6 @@ A matrix $\matr{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is simil
Similar matrices have the same eigenvalues.
\end{theorem}
\begin{theorem}[Eigendecomposition] \marginnote{Eigendecomposition}
Given a matrix $\matr{A} \in \mathbb{R}^{n \times n}$.
If the eigenvectors of $\matr{A}$ form a basis of $\mathbb{R}^n$,
then $\matr{A} \in \mathbb{R}^{n \times n}$ can be decomposed into:
\[ \matr{A} = \matr{P}\matr{D}\matr{P}^{-1} \]
where $\matr{P} \in \mathbb{R}^{n \times n}$ contains the eigenvectors of $\matr{A}$ as its columns and
$\matr{D}$ is a diagonal matrix whose diagonal contains the eigenvalues of $\matr{A}$.
\end{theorem}
\begin{theorem} \marginnote{Symmetric matrix diagonalizability}
A symmetric matrix $\matr{A} \in \mathbb{R}^{n \times n}$ is always diagonalizable.
\end{theorem}