mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-15 02:52:22 +01:00
Add SMM SVD
This commit is contained in:
@ -8,6 +8,7 @@
|
||||
\usepackage[inline]{enumitem}
|
||||
\usepackage{marginnote}
|
||||
\usepackage[bottom]{footmisc}
|
||||
\usepackage{array}
|
||||
|
||||
\geometry{ margin=3cm, lmargin=2cm, rmargin=4cm, marginparwidth=3cm }
|
||||
\hypersetup{ colorlinks, citecolor=black, filecolor=black, linkcolor=black, urlcolor=black, linktoc=all }
|
||||
@ -59,10 +60,9 @@
|
||||
\pagenumbering{arabic}
|
||||
|
||||
\input{sections/_finite_numbers.tex}
|
||||
\newpage
|
||||
\input{sections/_linear_algebra.tex}
|
||||
\newpage
|
||||
\input{sections/_linear_systems.tex}
|
||||
\input{sections/_matrix_decomp.tex}
|
||||
|
||||
|
||||
\end{document}
|
||||
@ -209,6 +209,7 @@ Common norms are:
|
||||
\frac{\vec{x}^T\vec{y}}{\Vert \vec{x} \Vert \cdot \Vert \vec{y} \Vert}
|
||||
\]
|
||||
\end{enumerate}
|
||||
Note: an orthogonal matrix represents a rotation.
|
||||
|
||||
\item[Orthogonal basis] \marginnote{Orthogonal basis}
|
||||
Given a $n$-dimensional vector space $V$ and a basis $\beta = \{ \vec{b}_1, \dots, \vec{b}_n \}$ of $V$.
|
||||
@ -338,15 +339,6 @@ A matrix $\matr{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is simil
|
||||
Similar matrices have the same eigenvalues.
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem}[Eigendecomposition] \marginnote{Eigendecomposition}
|
||||
Given a matrix $\matr{A} \in \mathbb{R}^{n \times n}$.
|
||||
If the eigenvectors of $\matr{A}$ form a basis of $\mathbb{R}^n$,
|
||||
then $\matr{A} \in \mathbb{R}^{n \times n}$ can be decomposed into:
|
||||
\[ \matr{A} = \matr{P}\matr{D}\matr{P}^{-1} \]
|
||||
where $\matr{P} \in \mathbb{R}^{n \times n}$ contains the eigenvectors of $\matr{A}$ as its columns and
|
||||
$\matr{D}$ is a diagonal matrix whose diagonal contains the eigenvalues of $\matr{A}$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem} \marginnote{Symmetric matrix diagonalizability}
|
||||
A symmetric matrix $\matr{A} \in \mathbb{R}^{n \times n}$ is always diagonalizable.
|
||||
\end{theorem}
|
||||
@ -0,0 +1,131 @@
|
||||
\chapter{Matrix decomposition}
|
||||
|
||||
|
||||
\section{Eigendecomposition}
|
||||
\marginnote{Eigendecomposition}
|
||||
Given a matrix $\matr{A} \in \mathbb{R}^{n \times n}$.
|
||||
If the eigenvectors of $\matr{A}$ form a basis of $\mathbb{R}^n$,
|
||||
then $\matr{A} \in \mathbb{R}^{n \times n}$ can be decomposed into:
|
||||
\[ \matr{A} = \matr{P}\matr{D}\matr{P}^{-1} \]
|
||||
where $\matr{P} \in \mathbb{R}^{n \times n}$ contains the eigenvectors of $\matr{A}$ as its columns and
|
||||
$\matr{D}$ is a diagonal matrix whose diagonal contains the eigenvalues of $\matr{A}$.
|
||||
|
||||
|
||||
|
||||
\section{Singular value decomposition}
|
||||
\marginnote{Singular value decomposition}
|
||||
Given a matrix $\matr{A} \in \mathbb{R}^{m \times n}$ of rank $r \in [0, \min\{m, n\}]$.
|
||||
The singular value decomposition (SVD) of $\matr{A}$ is always possible and has form:
|
||||
\[
|
||||
\matr{A} = \matr{U}\matr{\Sigma}\matr{V}^T
|
||||
\]
|
||||
where:
|
||||
\begin{itemize}
|
||||
\item
|
||||
$\matr{U} \in \mathbb{R}^{m \times m}$ is an orthogonal matrix with columns $\vec{u}_i$ called left-singular vectors.
|
||||
|
||||
\item
|
||||
$\matr{\Sigma} \in \mathbb{R}^{m \times n}$ is an orthogonal matrix with columns $\vec{v}_i$ called right-singular vectors.
|
||||
|
||||
\item
|
||||
$\matr{V} \in \mathbb{R}^{n \times n}$ is a matrix with $\matr{\Sigma}_{i,j} = 0$ (i.e. diagonal if it was a square matrix) and
|
||||
the singular values $\sigma_i, i = 1 \dots r$ on the diagonal.
|
||||
By convention $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r \geq 0$.
|
||||
Note that singular values $\sigma_j = 0$ for $(r + 1) \leq j \leq n$.
|
||||
\end{itemize}
|
||||
|
||||
\marginnote{Singular value equation}
|
||||
We can also represent SVD as a \textbf{singular value equation}, which resembles the eigenvalue equation:
|
||||
\[ \matr{A}\vec{v}_i = \sigma_i\vec{u}_i \text{ for } i = 1, \dots, r \]
|
||||
This is derived from:
|
||||
\[
|
||||
\matr{A} = \matr{U}\matr{\Sigma}\matr{V}^T
|
||||
\iff \matr{A}\matr{V} = \matr{U}\matr{\Sigma}\matr{V}^T\matr{V}
|
||||
\iff \matr{A}\matr{V} = \matr{U}\matr{\Sigma}
|
||||
\]
|
||||
|
||||
\subsection{Singular values and eigenvalues}
|
||||
\marginnote{Eigendecomposition of $\matr{A}^T\matr{A}$ and $\matr{A}\matr{A}^T$}
|
||||
Given $\matr{A} \in \mathbb{R}^{m \times n}$, we can obtain the eigenvalues and eigenvectors
|
||||
of $\matr{A}^T\matr{A}$ and $\matr{A}\matr{A}^T$ through SVD.
|
||||
|
||||
For $\matr{A}^T\matr{A}$, we can compute:
|
||||
\[
|
||||
\begin{split}
|
||||
\matr{A}^T\matr{A} & = (\matr{U}\matr{\Sigma}\matr{V}^T)^T(\matr{U}\matr{\Sigma}\matr{V}^T) \text{ using } (\matr{A}\matr{B})^T = \matr{B}^T\matr{A}^T \\
|
||||
& = (\matr{V}\matr{\Sigma}^T\matr{U}^T)(\matr{U}\matr{\Sigma}\matr{V}^T) \\
|
||||
& = \matr{V}\matr{\Sigma}^T\matr{\Sigma}\matr{V}^T \\
|
||||
& = \matr{V}\matr{\Sigma}^2\matr{V}^T
|
||||
\end{split}
|
||||
\]
|
||||
As $\matr{V}$ is orthogonal ($\matr{V}^T = \matr{V}^{-1}$), we can apply the eigendecomposition theorem:
|
||||
\begin{itemize}
|
||||
\item The diagonal of $\matr{\Sigma}^2$ (i.e. the square of the singular values of $A$) are the eigenvalues of $\matr{A}^T\matr{A}$
|
||||
\item The columns of $\matr{V}$ (right-singular vectors) are the eigenvectors of $\matr{A}^T\matr{A}$
|
||||
\end{itemize}
|
||||
|
||||
The same process holds for $\matr{A}\matr{A}^T$. In this case, the columns of $\matr{U}$ (left-singular vectors) are the eigenvectors.
|
||||
|
||||
|
||||
\subsection{Singular values and 2-norm}
|
||||
Given a symmetric matrix $\matr{A} \in \mathbb{R}^{n \times n}$,
|
||||
we have that $\matr{A}^T\matr{A} = \matr{A}^2 = \matr{A}\matr{A}^T$ (as $\matr{A}^T = \matr{A}$).
|
||||
|
||||
The eigenvalues of $\matr{A}^2$ are $\lambda_1^2, \dots,\lambda_n^2$, where $\lambda_i$ are eigenvalues of $\matr{A}$.
|
||||
Alternatively, the eigenvalues of $\matr{A}^2$ are the squared singular values of $\matr{A}$: $\lambda_i^2 = \sigma_i^2$.
|
||||
Moreover, the eigenvalues of $\matr{A}^{-1}$ are $\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}$.
|
||||
|
||||
\marginnote{2-norm using SVD}
|
||||
We can compute the 2-norm as:
|
||||
\[ \Vert \matr{A} \Vert_2 = \sqrt{\rho(\matr{A}^T\matr{A})} = \sqrt{\rho(\matr{A}^2)} = \sqrt{\max\{\sigma_1^2, \dots, \sigma_r^2\}} = \sigma_1 \]
|
||||
\[
|
||||
\Vert \matr{A}^{-1} \Vert_2 = \sqrt{\rho((\matr{A}^{-1})^T(\matr{A}^{-1}))} =
|
||||
\sqrt{\rho((\matr{A}\matr{A}^T)^{-1})} = \sqrt{\rho((\matr{A}^2)^{-1})} = \sqrt{\max\{\frac{1}{\sigma_1^2}, \dots, \frac{1}{\sigma_r^2}\}} = \frac{1}{\sigma_r}
|
||||
\]
|
||||
Furthermore, we can compute the condition number of $\matr{A}$ as:
|
||||
\[ K(\matr{A}) = \Vert \matr{A} \Vert_2 \cdot \Vert \matr{A}^{-1} \Vert_2 = \sigma_1 \cdot \frac{1}{\sigma_r} \]
|
||||
|
||||
|
||||
|
||||
\subsection{Matrix approximation}
|
||||
Given a matrix $\matr{A} \in \mathbb{R}^{m \times n}$ and its SVD decomposition $\matr{A} = \matr{U}\matr{\Sigma}\matr{V}^T$,
|
||||
we can construct a rank-1 matrix (dyad) $\matr{A}_i \in \mathbb{R}^{m \times n}$ as: \marginnote{Dyad}
|
||||
\[ \matr{A}_i = \vec{u}_i \vec{v}_i^T \]
|
||||
where $\vec{u}_i \in \mathbb{R}^m$ is the $i$-th column of $\matr{U}$ and
|
||||
$\vec{v}_i \in \mathbb{R}^n$ is the $i$-th column of $\matr{V}$.
|
||||
Then, we can compose $\matr{A}$ as a sum of dyads:
|
||||
\[ \matr{A}_i = \sum_{i=1}^{r} \sigma_i \vec{u}_i \vec{v}_i^T = \sum_{i=1}^{r} \sigma_i \matr{A}_i \]
|
||||
|
||||
\marginnote{Rank-$k$ approximation}
|
||||
By considering only the first $k < r$ singular values, we can obtain a rank-$k$ approximation of $\matr{A}$:
|
||||
\[ \hat{\matr{A}}(k) = \sum_{i=1}^{k} \sigma_i \vec{u}_i \vec{v}_i^T = \sum_{i=1}^{k} \sigma_i \matr{A}_i \]
|
||||
Each dyad required $1 + m + n$ (respectively for $\sigma_i$, $\vec{u}_i$ and $\vec{v}_i$) numbers to be stored.
|
||||
A rank-$k$ approximation requires to store $k(1 + m + n)$ numbers.
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=0.60\textwidth]{img/rank_k_approx.pdf}
|
||||
\caption{Approximation of an image}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
\section{Eigendecomposition vs SVD}
|
||||
\begin{center}
|
||||
\begin{tabular}{m{16em} | m{16em}}
|
||||
\hline
|
||||
\multicolumn{1}{c|}{\textbf{Eigendecomposition}} & \multicolumn{1}{c}{\textbf{SVD}} \\
|
||||
\multicolumn{1}{c|}{$\matr{A} = \matr{P}\matr{D}\matr{P}^{-1}$} & \multicolumn{1}{c}{$\matr{A}=\matr{U}\matr{\Sigma}\matr{V}$} \\
|
||||
\hline
|
||||
Only defined for square matrices $\matr{A} \in \mathbb{R}^{n \times n}$ with eigenvectors that form a basis of $\mathbb{R}^n$
|
||||
& Always exists \\
|
||||
\hline
|
||||
$\matr{P}$ is not necessarily orthogonal & $\matr{U}$ and $\matr{V}$ are orthogonal \\
|
||||
\hline
|
||||
The elements on the diagonal of $\matr{D}$ may be in $\mathbb{C}$
|
||||
& The elements on the diagonal of $\matr{\Sigma}$ are all non-negative reals \\
|
||||
\hline
|
||||
\multicolumn{2}{c}{For symmetric matrices, eigendecomposition and SVD are the same} \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
Reference in New Issue
Block a user