mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Add SMM probability and random variables
This commit is contained in:
@ -65,6 +65,7 @@
|
||||
\renewcommand{\vec}[1]{{\mathbf{#1}}}
|
||||
\newcommand{\nullvec}[0]{\bar{\vec{0}}}
|
||||
\newcommand{\matr}[1]{{\bm{#1}}}
|
||||
\newcommand{\prob}[1]{{\mathcal{P}({#1})}}
|
||||
|
||||
|
||||
\renewcommand*{\maketitle}{%
|
||||
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 39 KiB |
@ -13,5 +13,6 @@
|
||||
\input{sections/_matrix_decomp.tex}
|
||||
\input{sections/_vector_calculus.tex}
|
||||
\input{sections/_gradient_methods.tex}
|
||||
\input{sections/_probability.tex}
|
||||
|
||||
\end{document}
|
||||
@ -0,0 +1,210 @@
|
||||
\chapter{Probability}
|
||||
|
||||
|
||||
\section{Probability}
|
||||
\begin{description}
|
||||
\item[State space] \marginnote{State space}
|
||||
Set $\Omega$ of all the possible results of an experiment.
|
||||
\begin{example}
|
||||
A coin is tossed two times.
|
||||
$\Omega = \{ (\text{T}, \text{T}), (\text{T}, \text{H}), (\text{H}, \text{T}), (\text{H}, \text{H}) \}$
|
||||
\end{example}
|
||||
|
||||
\item[Event] \marginnote{Event}
|
||||
Set of possible results (i.e. $A$ is an event if $A \subseteq \Omega$)
|
||||
|
||||
\item[Probability] \marginnote{Probability}
|
||||
Let $\mathbb{E}$ be the set of all the possible events (i.e. power set of $\Omega$).
|
||||
The probability is a function:
|
||||
\[ \prob{A}: \mathbb{E} \rightarrow [0, 1] \]
|
||||
\begin{example}
|
||||
Let $\Omega$ be as above.
|
||||
Given an event $A = \{ (\text{T}, \text{H}), (\text{H}, \text{T}) \}$,
|
||||
its probability is: $\prob{A} = \frac{2}{4} = \frac{1}{2}$
|
||||
\end{example}
|
||||
|
||||
\item[Conditional probability] \marginnote{Conditional probability}
|
||||
Probability of an event $B$, knowing that another event $A$ happened:
|
||||
\[ \prob{B \vert A} = \frac{\prob{A \cap B}}{\prob{A}} \text{, with } \prob{A} \neq 0 \]
|
||||
|
||||
\begin{example}
|
||||
A coin is tossed three times.
|
||||
Given the events $A = \{ \text{tails two times} \}$ and $B = \{ \text{one heads and one tails} \}$
|
||||
We have that:
|
||||
|
||||
\begin{minipage}{\linewidth}
|
||||
\centering
|
||||
\small
|
||||
$\Omega = \{
|
||||
(\text{T}, \text{T}, \text{T}), (\text{T}, \text{T}, \text{H}), (\text{T}, \text{H}, \text{T})
|
||||
(\text{T}, \text{H}, \text{H}), (\text{H}, \text{T}, \text{T}), (\text{H}, \text{T}, \text{H})
|
||||
(\text{H}, \text{H}, \text{T}), (\text{H}, \text{H}, \text{H})
|
||||
\}$
|
||||
\end{minipage}
|
||||
|
||||
\begin{minipage}{.325\linewidth}
|
||||
\centering
|
||||
$\prob{A} = \frac{4}{8} = \frac{1}{2}$
|
||||
\end{minipage}
|
||||
\begin{minipage}{.325\linewidth}
|
||||
\centering
|
||||
$\prob{B} = \frac{6}{8} = \frac{3}{4}$
|
||||
\end{minipage}
|
||||
\begin{minipage}{.325\linewidth}
|
||||
\centering
|
||||
$\prob{A \cap B} = \frac{3}{8}$
|
||||
\end{minipage}
|
||||
|
||||
\begin{minipage}{.48\linewidth}
|
||||
\centering
|
||||
$\prob{A \vert B} = \frac{3/8}{3/4} = \frac{1}{2}$
|
||||
\end{minipage}
|
||||
\begin{minipage}{.48\linewidth}
|
||||
\centering
|
||||
$\prob{B \vert A} = \frac{3/8}{1/2} = \frac{3}{4}$
|
||||
\end{minipage}
|
||||
\end{example}
|
||||
|
||||
\item[Independent events] \marginnote{Independent events}
|
||||
Two events $A$ and $B$ are independent if:
|
||||
\[ \prob{A \cap B} = \prob{A}\prob{B} \]
|
||||
It follows that:
|
||||
|
||||
\begin{minipage}{.48\linewidth}
|
||||
\centering
|
||||
$\prob{A \vert B} = \prob{A}$
|
||||
\end{minipage}
|
||||
\begin{minipage}{.48\linewidth}
|
||||
\centering
|
||||
$\prob{B \vert A} = \prob{B}$
|
||||
\end{minipage}
|
||||
|
||||
In general, given $n$ events $A_1, \dots, A_n$, they are independent if:
|
||||
\[ \prob{A_1 \cap \dots \cap A_n} = \prod_{i=1}^{n} \prob{A_i} \]
|
||||
\end{description}
|
||||
|
||||
|
||||
|
||||
\section{Random variables}
|
||||
\begin{description}
|
||||
\item[Random variable (RV)] \marginnote{Random variable}
|
||||
A random variable $X$ is a function:
|
||||
\[ X: \Omega \rightarrow \mathbb{R} \]
|
||||
|
||||
\item[Target space/Support] \marginnote{Target space}
|
||||
Given a random variable $X$,
|
||||
the target space (or support) $\mathcal{T}_X$ of $X$ is the set of all its possible values:
|
||||
\[ \mathcal{T}_X = \{ x \mid x = X(\omega), \forall \omega \in \Omega \} \]
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Discrete random variables}
|
||||
|
||||
\begin{description}
|
||||
\item[Discrete random variable] \marginnote{Discrete random variable}
|
||||
A random variable $X$ is discrete if its target space $\mathcal{T}_X$ is finite or countably infinite.
|
||||
|
||||
\begin{example}
|
||||
A coin is tossed twice.
|
||||
|
||||
The random variable is $X(\omega) = \{ \text{number of heads} \}$.
|
||||
We have that $\mathcal{T}_X = \{ 0, 1, 2 \}$, therefore $X$ is discrete.
|
||||
\end{example}
|
||||
|
||||
\begin{example}
|
||||
Roll a die until 6 comes out.
|
||||
|
||||
The random variable is $Y(\omega) = \{ \text{number of rolls before 6} \}$.
|
||||
We have that $\mathcal{T}_Y = \{ 1, 2, \dots \} = \mathbb{N} \smallsetminus \{0\}$,
|
||||
therefore $Y$ is discrete as $\mathcal{T}_Y$ is a countable set.
|
||||
\end{example}
|
||||
|
||||
\item[Probability mass function (PMF)] \marginnote{Probability mass function (PMF)}
|
||||
Given a discrete random variable $X$, its probability mass function is a function $f_X: \mathcal{T}_X \rightarrow [0, 1]$ such that:
|
||||
\[ f_X(x) = \prob{X = x}, \forall x \in \mathcal{T}_X \]
|
||||
|
||||
A PMF has the following properties:
|
||||
\begin{enumerate}
|
||||
\item $f_X(x) \geq 0, \forall x \in \mathcal{T}_X$
|
||||
\item $\sum_{x \in \mathcal{T}_X} f_X(x) = 1$
|
||||
\item Let $A \subseteq \Omega$, $\prob{X = x \in A} = \sum_{x \in A} f_X(x)$
|
||||
\end{enumerate}
|
||||
|
||||
\begin{example}
|
||||
Let $\Omega = \{ (\text{T}, \text{T}), (\text{T}, \text{H}), (\text{H}, \text{T}), (\text{H}, \text{H}) \}$.
|
||||
Given a random variable $X = \{ \text{number of heads} \}$ with $\mathcal{T}_X = \{ 0, 1, 2 \}$.
|
||||
The PMF is:
|
||||
\[
|
||||
\begin{split}
|
||||
f_X &= \prob{X = 0} = \frac{1}{4} \\
|
||||
f_X &= \prob{X = 1} = \frac{2}{4} \\
|
||||
f_X &= \prob{X = 2} = \frac{1}{4}
|
||||
\end{split}
|
||||
\]
|
||||
\end{example}
|
||||
\end{description}
|
||||
|
||||
\subsubsection{Common distributions}
|
||||
\begin{descriptionlist}
|
||||
\item[Uniform distribution] \marginnote{Uniform distribution}
|
||||
Given a discrete random variable $X$ with $\#(\mathcal{T}_X) = N$,
|
||||
$X$ has an uniform distribution if:
|
||||
\[ f_X(x) = \frac{1}{N}, \forall x \in \mathcal{T}_X \]
|
||||
|
||||
\item[Poisson distribution] \marginnote{Poisson distribution}
|
||||
Given a discrete random variable $X$ with mean $\lambda$,
|
||||
$X$ has a poisson distribution if:
|
||||
\[ f_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}, \forall x \in \mathcal{T}_X \]
|
||||
\end{descriptionlist}
|
||||
|
||||
|
||||
\subsection{Continuous random variables}
|
||||
|
||||
\begin{description}
|
||||
\item[Continuous random variable] \marginnote{Continuous random variable}
|
||||
A random variable $X$ is continuous if its target space $\mathcal{T}_X$ is uncountably infinite (i.e. a subset of $\mathbb{R}$).
|
||||
Usually, $\mathcal{T}_X$ is an interval or union of intervals.
|
||||
|
||||
\begin{example}
|
||||
Given a random variable $Z = \{ \text{Time before the arrival of a client} \}$.
|
||||
$Z$ is continuous as $\mathcal{T}_Z = [a, b] \subseteq [0, +\infty[$ is an uncountable set.
|
||||
\end{example}
|
||||
|
||||
\item[Probability density function (PDF)] \marginnote{Probability density function (PDF)}
|
||||
Given a continuous random variable $X$,
|
||||
its probability density function is a function $f_X: \mathcal{T}_X \rightarrow \mathbb{R}$ such that:
|
||||
\[ \prob{X \in A} = \int_{A} f_X(x) \,dx \]
|
||||
\[ \prob{a \leq X \leq b} = \int_{a}^{b} f_X(x) \,dx \]
|
||||
Note that $\prob{X = a} = \prob{a \leq X \leq a} = \int_{a}^{a} f_X(x) \,dx = 0$
|
||||
|
||||
A PDF has the following properties:
|
||||
\begin{enumerate}
|
||||
\item $f_X(x) \geq 0, \forall x \in \mathcal{T}_X$
|
||||
\item $\int_{x \in \mathcal{T}_X} f_X(x) \,dx = 1$
|
||||
\item $\prob{X \in A} = \int_{A} f_X(x) \,dx$
|
||||
\end{enumerate}
|
||||
\end{description}
|
||||
|
||||
\subsubsection{Common distributions}
|
||||
\begin{descriptionlist}
|
||||
\item[Continuous uniform distribution] \marginnote{Continuous uniform distribution}
|
||||
Given a continuous random variable $X$ with $\mathcal{T}_X = [a, b]$,
|
||||
$X$ has a continuous uniform distribution if:
|
||||
\[ f_X(x) = \frac{1}{b-a}, \forall x \in \mathcal{T}_X \]
|
||||
|
||||
\item[Normal distribution] \marginnote{Normal distribution}
|
||||
Given a continuous random variable $X$ and the parameters $\mu$ (mean) and $\sigma$ (variance).
|
||||
$X$ has a normal distribution if:
|
||||
\[ f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} , \forall x \in \mathcal{T}_X\]
|
||||
|
||||
\begin{description}
|
||||
\item[Standard normal distribution] \marginnote{Standard normal distribution}
|
||||
Normal distribution with $\mu = 0$ and $\sigma = 1$.
|
||||
\end{description}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{img/normal_distribution.png}
|
||||
\caption{Normal distributions and standard normal distribution}
|
||||
\end{figure}
|
||||
\end{descriptionlist}
|
||||
Reference in New Issue
Block a user