Add TM summarization

This commit is contained in:
2024-10-02 19:39:44 +02:00
parent 709c6c9c76
commit 368d88da4a
6 changed files with 180 additions and 0 deletions

View File

@ -0,0 +1,15 @@
{
"name": "Big Data Analytics and Text Mining",
"year": 2,
"semester": 1,
"pdfs": [
{
"name": "Text mining",
"path": "module1/tm.pdf"
},
{
"name": "Big data analytics",
"path": "module2/bda.pdf"
}
]
}

View File

@ -0,0 +1 @@
../../../ainotes.cls

View File

@ -0,0 +1,138 @@
\chapter{Automatic text summarization}
\begin{description}
\item[Extractive summarization] \marginnote{Extractive summarization}
Select fragments of text.
\item[Abstractive summarization] \marginnote{Abstractive summarization}
Rephrase the content of the text.
\item[Hybrid summarization] \marginnote{Hybrid summarization}
Apply an extractive method followed by an abstractive one.
\end{description}
\begin{description}
\item[Generic vs query-focused] \phantom{}
\begin{description}
\item[Generic]
Summary of the whole document.
\item[Query-focused]
Summary that replies to given questions
\end{description}
\item[Technical vs lay] \phantom{}
\begin{description}
\item[Technical]
Summary using scientific language.
\item[Lay]
Summary using common language.
\end{description}
\item[Narrative vs bullet point] \phantom{}
\begin{description}
\item[Narrative]
Standard textual summary.
\item[Bullet point]
Set of key phrases.
\end{description}
\item[Single document vs multi document] \phantom{}
\begin{description}
\item[Single document]
Summary covering a single document.
\item[Multi document]
Summary covering multiple documents.
\end{description}
\item[Short document vs long document] \phantom{}
\begin{description}
\item[Short document]
Summary of a document with a few tokens.
\item[Long document]
Summary of a document with many tokens.
\end{description}
\end{description}
\section{Metrics}
Summarization metrics can evaluate different levels:
\begin{descriptionlist}
\item[Syntactic]
Check word overlapping (e.g., ROUGE).
\item[Semantic]
Check semantic coverage (e.g., BERTScore).
\item[Factuality]
Check factuality to the source (e.g., BARTScore).
\item[Fluency]
Check for redundancies (e.g., unique N-gram ratio).
\item[Efficiency]
Measure trade-off between performance and costs (e.g., CARBURACY).
\end{descriptionlist}
\subsection{Recall-Oriented Understudy for Gisting Evaluation (ROUGE)}
\begin{description}
\item[ROUGE] \marginnote{ROUGE}
N-gram oriented metric that compares the generated summary and the ground truth.
\begin{description}
\item[ROUGE-1] Overlap of 1-grams.
\item[ROUGE-2] Overlap of 2-grams.
\item[ROUGE-L] Length of the common longest subsequence.
\end{description}
\end{description}
\begin{description}
\item[Precision]
\[ \texttt{ROUGE}_\texttt{precision} = \frac{\vert \text{overlaps} \vert}{\vert \text{generated summary} \vert} \]
\item[Recall]
\[ \texttt{ROUGE}_\texttt{recall} = \frac{\vert \text{overlaps} \vert}{\vert \text{ground truth} \vert} \]
\end{description}
\subsection{Limitations}
\begin{itemize}
\item ROUGE only evaluates on a syntactic level.
\item ROUGE-2 and ROUGE-L are sensitive to the position of words.
\end{itemize}
\section{State-of-the-art generative summarizers}
\subsection{BART}
\begin{itemize}
\item \marginnote{BART}
Encoder-decoder Transformer with an input size of 1024 tokens.
\item It is suited for short document summarization.
\item It is pre-trained using a denoising sequence-to-sequence approach.
\end{itemize}
\subsection{Longformer encoder-decoder}
\begin{itemize}
\item \marginnote{Longformer encoder-decoder}
Encoder-decoder Transformer with an input size of 16k tokens.
\item It is suited for long document summarization.
\item It uses a linear encoder self-attention based on global and local attention that reduces the quadratic complexity of the standard attention mechanism.
\end{itemize}
\subsection{PRIMERA}
\begin{itemize}
\item \marginnote{PRIMERA}
Encoder-decoder Transformer based on Longformer with an input size of 4K tokens.
\item It is suited for long document summarization.
\item It has an ad-hoc pre-training for multi document summarization.
\end{itemize}

View File

@ -0,0 +1,13 @@
\documentclass[11pt]{ainotes}
\title{Big Data Analytics and Text Mining\\(Module 1)}
\date{2024 -- 2025}
\def\lastupdate{{PLACEHOLDER-LAST-UPDATE}}
\def\giturl{{PLACEHOLDER-GIT-URL}}
\begin{document}
\makenotesfront
\input{./sections/_summarization.tex}
\end{document}

View File

@ -0,0 +1 @@
../../../ainotes.cls

View File

@ -0,0 +1,12 @@
\documentclass[11pt]{ainotes}
\title{Big Data Analytics and Text Mining\\(Module 2)}
\date{2024 -- 2025}
\def\lastupdate{{PLACEHOLDER-LAST-UPDATE}}
\def\giturl{{PLACEHOLDER-GIT-URL}}
\begin{document}
\makenotesfront
\end{document}