diff --git a/src/year2/machine-learning-for-computer-vision/img/_centernet_other_tasks.png b/src/year2/machine-learning-for-computer-vision/img/_centernet_other_tasks.png
new file mode 100644
index 0000000..c9a5bbb
Binary files /dev/null and b/src/year2/machine-learning-for-computer-vision/img/_centernet_other_tasks.png differ
diff --git a/src/year2/machine-learning-for-computer-vision/img/_darknet.pdf b/src/year2/machine-learning-for-computer-vision/img/_darknet.pdf
new file mode 100644
index 0000000..4f711f3
Binary files /dev/null and b/src/year2/machine-learning-for-computer-vision/img/_darknet.pdf differ
diff --git a/src/year2/machine-learning-for-computer-vision/img/_focal_cdf_background.pdf b/src/year2/machine-learning-for-computer-vision/img/_focal_cdf_background.pdf
new file mode 100644
index 0000000..627584b
Binary files /dev/null and b/src/year2/machine-learning-for-computer-vision/img/_focal_cdf_background.pdf differ
diff --git a/src/year2/machine-learning-for-computer-vision/img/_focal_cdf_foreground.pdf b/src/year2/machine-learning-for-computer-vision/img/_focal_cdf_foreground.pdf
new file mode 100644
index 0000000..1a0c0a6
Binary files /dev/null and b/src/year2/machine-learning-for-computer-vision/img/_focal_cdf_foreground.pdf differ
diff --git a/src/year2/machine-learning-for-computer-vision/img/_focal_loss.pdf b/src/year2/machine-learning-for-computer-vision/img/_focal_loss.pdf
new file mode 100644
index 0000000..34eb7c3
--- /dev/null
+++ b/src/year2/machine-learning-for-computer-vision/img/_focal_loss.pdf
@@ -0,0 +1,721 @@
+%PDF-1.5
%
+1 0 obj
<>/OCGs[7 0 R]>>/Pages 3 0 R/Type/Catalog>>
endobj
2 0 obj
<>stream
+
+
+
+
+ application/pdf
+
+
+ loss
+
+
+ Adobe Illustrator CC 2017 (Macintosh)
+ 2017-06-11T14:20:06-07:00
+ 2017-06-11T14:20:06-07:00
+ 2017-06-11T14:20:06-07:00
+
+
+
+ 220
+ 256
+ JPEG
+ /9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAADcAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYqgtb0m2
1jRr/SLoutrqNtNaTtGQHEc8ZjYqSGANG22xVJPKdh+itVvtFhuJprHTrLTYLSOZ+XFY4pIqgCig
sI1LcVFTlUSeMjyH6VvoyjLVdirsVdirsVdirsVdirsVdiqVX2rvbzunxhVbgPTs7m7r8CsSTBUL
9vocnDGZcq+YH3sJ5BHnfyJ+5KtX89aTo9mbzVL42VsOsk2m3ydGVehFesgp/YcEoGPP7wfuWExL
lfyI+9fpPm/9KXWu21tUS+X5TDd+rBwV2Clv3ZWZyPsn7ahqUbjwZGaLNk+KuxV2KuxV2KuxV2Ku
xV2KuxV2KuxV2KoXVr86fpd3fLbzXjWsLzLaWyGSaUopYRxoPtO1KAeOKsS0O8nufPMd/NDJZjU9
JVvqk44yLIgglMbKaMGQTEEEDvlNfvP839LIcj8P0s3y5i7FXYq7FXYq7FXYq7FXYq7FUonVzc3P
G7urX97uLaJJQ37mP7XKGan4ZRmnVbyHujf+9Ldi90T7zX6Qxnzvqx0rTBcN5uk0RlVqXl3YRXMo
BkiHwQCGNm/l2/mJNafDLDKxzJ94r9ARl58gPcb/AElBv5b1m68w6xeQ+ab02+l6g811pUiS+g6S
2HNbdSJ+PBVuUIogSqCqF+Tta1PScVdirsVdirsVdirsVdirsVdirsVdirsVdirCfNdx+jtf0fV2
Ki3t9Sa2uGY8VVLu1jjLE/5NK5Rk2nE+8fNnDex5H7N/0M2y9g7FXYq7FXYq7FXYq7FXYq7FUjvZ
GS5uKamdPrL0CRvz/cxfzq3TAcsY/UkSA5pD5jv5kt4ki86WGkzsJCmo3sNqZUAaOvpJI0SEH7LV
/m8aYjJGX0qZA8kToTxSXPnR49ak1TjdtG9oyTpHYulqlbeMzPIj1qHYxcVqelcKGY4q7FXYq7FX
Yq7FXYq7FXYq7FXYq7FXYqwg+ZL3WfPGu+SLiCOPS0sWAu0VjMTNFDy/vFeA8frB2o3bkBtzVU9a
8oW0HkW50OyLSJpi2sVo9w3I0tbeKNJHpxWoX4moBXKc4Bjvy6+7kfsJZQnwSEu4pt5C8yjWtGRJ
mP6Rs1WO6R/tkEfu5WH+Wo3/AMoMO2WQJI35jY/1hz+HUeRDLLj4JmPxHu6fqPmCyQMpJAIJX7Q7
iuSa2O/8rJ/L71JIx5k0wtGFLUu4SKvyCqpDUZvgPwjf23GKqMv5p/l1HpJ1VvMNkbMRLMQkoeYI
5otbdazcq7ceHIHYjbFUbpnnnyfqt9b2Gl6va315cwvcRQ20gmIijKhmfhyEe7gUehO9OhoqnmKu
xV2KuxV2KqD2MDyNIfUVnNW4SSICQAK0VgOgxVBaj5Y0PU4fQ1K1F7B3huHeVOob7Lsw6qDirdv5
a0O2kupbe1EMl+/qXzxs6NO/HjylIYczx2q3bFUzxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxVh0vl
i+0nzbrvnVLlbyOawZYdIjt5BNzijjNPXjeZ5Qxg+GMQniWPAcmf1FU20C6k1nSJJ76yksmv4oZL
mylqGjM9rEZIW5BHqhYqeSL8sEogij1Uhgd/p2qaVqgv7BwLpzJE37IkmXe5t3K0IEwX6xH8Vd23
XiDmKJmA8WuID05B31ymPMf7mnLxgZsYgTU4/Sf1/wBE9fgebI/I9t5Xlt7iPT3ura4lka4uLGW5
mDozUVmUhlaRar9pqkHZqEcRm0DETieKB6/jkfJwiTGRhIcMx0/SO8eaXeavyiXUrmJtCutN0K1i
SNY7Q6Hp94qujyu7q0qhhyMooB0IJ/aORZMav/yC165nigTXdLi09eMzyLoGnJN68ZQohSNI1eIn
mSGbp8DBwScVei+TfI9h5esLYTxWN3rMCSRPq9tp9tYSPHJK0gQJAKKo5UIBoevXFWS4q7FXYq7F
XYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FUNaf395/wAZh/yZjxVLNcsLUs7XSk6d
e8EvCpKmGVCPQuVYbqymgLDpRT+zlJkcc+Mcjz/X+g/BAkYmwxa/0GWC+jgum9HUGf8A0K/QenFd
NSi0KNH6Vzx2Khl5fsHjyTIHBPCTk0/I/VD+3p+LHXPlLHmjw5BYHI/xR9x5/jcdUxsfNGtaeTFq
iC6jQhObFIZgT0XmwigcnsH9FvBW65bi1mHLz/dy8+X6x7i4s9HmhvD97H5S+XI+8bMjsvMGk3cw
tkm9G8Ir9TuFaGenciOQKzD/AClqPfMmWGQF9O8bhxoZoyNXv3HYpjlTa7FXYqk3mrS/MepackGg
a3+gL1ZVd7z6rFecowrAx+nMQoqxB5ddvfFXi2o+arGy1HX7O8/N+7h1OZ2tJo/0TOI7b0CySrEi
jgklF484ShrVt2IIVQGoeeI9USDTD+b14IftyXdrostqUK+mkaPJG0U5LsxPw1B35U2qq9h8h6N5
lhZ9Z1bzY/ma21G1gNiPqiWMSR/FIJBHGxUs4kFSVDUAB6CirMMVdirsVdirsVdirsVdirsVdirs
VdirsVdirsVWXEEVxBJBKoeKVWSRSAQVYUIIO3TFUu0DTYNNtnsYGdorX0beNpG5MUhtokUnotaD
egGKpm6I6MjqGRgVZWFQQdiCDgItUmuLUWts9lewfX9EkXjRl9V4lr9iRNzIg7MNx3/mymMpYvOP
2j9jEExQTaTeJCkumTpq2nEH07e4lPrIh7QXg5Fl/wAiUNXu4GWzx4sws8/5w/H47nJhm+H3fJKJ
YNJCC0mY6aGIH6N1GOOOFm3oqBxLZSH/AIwFT75jx02fEbxSseWx/V9kfe5E5xyiskRP7f8Aj3zv
3IgQaxpxBikuII+p9GWsZ709K8+sQIv+pcLkv5SkP72Hxrh+0en5ycb8hjP93OUfL6h+v5RRUXmn
VIIw1yLaaP8AalmWaxA+TkXVu5/56gZfDU4Ji7MftHz2H3tZ0moiaAjP3Gj/AKXc/cmNv5rt5IxJ
LZXUcZG0sSLeIfkbNrj/AIYDLo4xL6ZRl8a++miWSUDU4yj8L+60TB5l8vzyelHqEHr94HkVJR84
34uPuxOCY3oojqMZ2sWj554oIJJ5CRFEpdyAWPFRU0Cgk7eGVNyVeU7rTL3Rob+w9N/rYWS7uI04
+tcKixyOzUHNvgClt+lO2KpxirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVQetX1zYaPfX1t
atfXNrbyzQ2UdeczxoWWNeKyNViKbKT4A9MVQGganqd3Yre3Wk3FnLeJBcNAzR1RpLeMvGebRSVR
6qeaKdugxVMvrc//ACxzffD/ANVMVd9bn/5Y5vvh/wCqmKoGS0WVzcR2VzZ3UlC8sDwoxan7YEhR
yP8AKByqWEE2Nj5fjf4sTFZINd9MxmIXcLCjR3McIZgf5mSUJ/yTxAyDkQfh+r9Sdwlf6GnjJa30
OTT2J/6Vt8IFqTuxiBihY9/iU5Px8vUA/G/vDPxZdd1r6dr6tzijupJabvdw6fIfoe3mspPvOUTh
jkbOLfvFA/O7bBqCNqPz/XaX3Ol+YfU9Z9DS5l6euGihl+hme/kX6GymWlxk2Bkj/pZffZbo66QF
b19nyBCi1v5uaMRvpVyqE/EDdC8FANqJc0j/AOFxGPJH6JyHvj/x/wDQmWpxS2lAH4AfduoDSdct
0paaHcRua1aMW9tWvf8A0KazNcsOq1Y6if8AW/sLj+FpD/AY/wBUkfpXWEHnLTLSO2sNOv7a3iFE
t4HteCitaL9Ze8IycNVm/ixwP+mDGWHCT6ZZI/6WX3hFReY/zIRqHSXaOvWWESORv3jkt1H/AAOW
DUXzxn4SH6QxOKuWS/fD9U0YPOPnOOgfyrNN4ur+l/wtJf8AiWT8WHUTHwif98Gusl7cJ+JH6D96
Oi853/H/AEjy1qiP4RRxyD7y6ZUcw6Rl8v2tkYHrXzT7Tb1r2yjumtprQycv9HuVCSrRivxKC1K0
r1yyJsWpCJySHYq7FXYq7FXYq7FXYq7FXYq7FXYq7FUo0XyzYaRqGq31tJK8urzi4uVkZSqsARRO
Kqe/VizUoteKqoVTfFUn83+VdO81eXrrQtReSOzu/TMjw8OY9KRZVp6iSJ9pB1U/firDNV81eVvy
21fVEuV1HUr3Vgmq3RQWRoK/VhxHK1OwjqzMCBtVqsoKqBn/AOclPI8M9tA1jqBe7AMTf6CFHI0H
qM12oi/2dNt+hBKqHtfP3lv8wvMeh2DWerafdRepdWF7a+k8aSCAyOJX4ycD8FI2Tdt1rxZlKqv5
d/OLyxpPlK04Wmp3OmWhFhY3E7Wsl3O0EQZvUpJFGWFVA4sWbdqUVyFUU/8AzkN5LXTor36lqDCQ
vzgC2vqRon+7ZP8ASOIjJqoYMd1bwOKsb82a/wDl7qOtrqOpxaxB+ktP0/WYpYJbNYikLGW3herl
g0kkKooLFOZPAqWZmVZhp353+W7zRLTVWsL6BLu5FmsTLbsfUKxtyVlm4un70U4nlQM3EKrMFVfy
T+dHlPzjf29lpMN2slyJyjXCRIAbaOF5AQJXav8ApIUUG5DdqEqovSfyt0XS/Mw8wWt7e/WRd398
bZmg9BpNTVFnVgsKyMv7lCtX5VG5OKsyxV2KoTTNMttNt5Le35enJPcXTcqV9S6ne4k6Abc5DTFU
XirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVWiGIStMEUTMoRpKDkVUkqpPWgLGnzxVdiqk9
paPdRXbwxtdQK8cNwVBkRJSpkVXIqocxryA60Hhiq240+wuZrea5top5rRzJayyIrtE5HEtGzAlT
Q0qMVV8VdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdir
sVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdiqX63r+kaHbRXWqXH1aCeeK1ifi7
1mnbjGlEDH4m79MVRlvdW1zH6ltMk0dSvONg68lNCKiu4PXADaqmFXYq7FXYq7FXYq7FXYq7FXYq
7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYqh77TtPv4livrWK7iR1lSOdFkVZIzyRwGBAZT
uD2xVjf5cpLHYarFIKFdSmKj/JkjilX8HyjAKv8ArFlLkGWZexdirsVdirsVdirsVdirsVdirHpD
qTSymOS34erKB613cRvQSMKcE+EDbbJg4+pNsDHKfpAr4oeefzNFcQxwaOL6CSa2SS7g1SVFSKUy
CeUrIor6HBfhUkty26HImunJkAevNL/y/wDMsur6Pos2qXdmPMF2J5riysL1bmMwI80SyIqXF2pT
kgBYOw5bbH4QEs5xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxVLdfXzC1nENCa2W7+sQGY3ZYJ9WWQG
dVKLJ8bRgqtR3xVJPJ880euaxZSsvForG7hUDjUSW4idqVP++VBynHfFL3j7k0K+P6mW5ch2KuxV
2KuxV2KuxV2KuxV2KpPFYJN6jmwtZyZpv3sx+M0lbr+7f9eY+SMidoxPvP8Ax0t8MlCuKQ939rHt
b8uQz63aS/4ShvGjvNNle7iuxbpGsLXFLgrxj9U23M1j35h18NrYA1uAPd+A1TNm7tDfl75U8r2d
tpWtaZaQQ3YN3p0c1nfTXtubWOe4ZVV2mmRjyXka/ErFl23GTYvQsVdirsVdirsVdirsVdirsVdi
rsVdirsVQWs61pujWX13UZGhtRJHEZFjklo0riNKiNXIBZgK0oO+KsOmvU03zn5dviyC01Ox/Rss
nUmUEPGBTvyoD4ZQdst94/H6B8WyAuMh7j+g/f8AYz7L2t2KuxV2KuxV2KuxV2KuxV2KsWns9Dln
me60rTrqf1ZQ01yYfVP7xqA80Zth03wHLkG0eXvSMkhySTVLLRZNXsRD5diuPq17ptwXjvYrW2tx
E09LqJUK+o0Ffji4/HVetMIkTueaLJ5o78uYZ7LynoVhfW0On6lHNcvc2EVwbrgztcOW9V57uR+f
LmWaUnfen2QqzbFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXlv5deYNU82ebfPGk+YTFqWnaBqSR6b
bz28HGFkuLngRRasyrGlGbcU8a1VTrzxoraj5V0+SJC9xbCMxcft1dAAiHajSOFjr/lZRmjZG9dL
7r5H4S4S2YpiMwTy5H3FM/I3mlNb0xY53B1K2VRcUpSVCKxzpTbjIu58Dt4Vtxz448VUeRH82Q5j
9XeGOXGcczA/DzHf+g+flTJckxdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsV
dirsVdirsVY1q/lq4tYZZ/J9vY6Tq19eQzapeLFFC08SyF5vUZYJjI7BmpyANWJ5DFUzgtDd6BHb
SOAZbdQsiinE8QUYAk7qaH55DJDiiQgiwwC/0e5tr+DU9OJsrqWRxbyJ0iuqkXFm+xqjuC8VRvUg
fsK1HFMfvoCzyyR/nV1/rR+dd/I5kDHNj4J7Ecj1if1d45H7RK9B86213xtdUUWOoVEZrtC7noFY
k8WbsjHf9kuPizLxGGWPFjNju6j3/rGzh5RLFLhybXyP8Mvcf0Hdk2BLsVdirsVdirsVS/zB5g0j
y9pFxrGrz/VtOtePrz8Hk483WNfhjV3PxOBsMVYbH+fH5dS3txbwXN1NBa2X1+e+S0nMCJVaI1VE
isQ6kEpw3A5cjTFUNN/zkT+V0eki/W+nlm4I36PS2l+sB3r+7JYLDyXia/vOO2xO1VU18pfnD5J8
2apbaXok8099NbPdTRPC8foCPgCkrPRS9ZKfuyw2O/SqrNsVdirsVdirsVdirsVdirsVdirsVdir
sVdiqH1DUbPT7cXN25jhMkUIYKz/ABzyrDGKIGO7yKK9B1O2KrdKdH0y1KMGAiQEg13CgEYql+sW
VqhnkuohNpN6oTUoj0QgALPtuKAAMR0oG24nKTI45cY5df1/rRZibDH9Y0cWin9JM0tjTjDrQAYq
jDdL1QG22FZeJRv92rtUjJpOKXiYjwZPsP7fxUnPx5wY8JAlE/wn9H4vuLVvJr+kcPq83K0anox0
+sQMp6cE5CQbdPRkYf8AFI6YI9oUeHPH1d42P6pf7ryDRLQxO+GXD/RluPnzj8fSO8p1Y+cI5Krd
WkishpLJaVu0Q+Doircxn/jJCuZkBCf0SB8jsft/W4uTxMf95AjzHqHwI/Um9jqumagpaxuorkL9
v0nVyp8GANVPscE8co8xSwyRl9JtFZBm7FXYq7FWGa/5a/MO51e4vdL88DSdKYq0WnNplrcCIKih
wZnZXYMwLb9K07Yqxy08qfmpq05kh/M1ZLS0dWgmg023V2mXmkizRKY1MdCCnJnV68qbKSq9I0O0
1Sz0q3ttVv8A9KahGpFxfiFbf1TyJDekhZV2oNsVR2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV
ZPbwTx+nPGssfJX4OoYckYOpoe6soI98VUdM/wCObaf8YY/+IjFUSQCKHpiqWfVLzTyTYL69pUk2
LEKyV3PoOdgP8htvAgbZRwSh9O47v1fq+5jRHJK10/S3kZNJuTo93KS0unSxgwSMdzztJOKmp3Zo
Spb+Y5aM8J+mYvyPP9v2htjm7/2oe+028Xib/S/V9L+7utPYTBPcRSmOeH/VgdvnlE9BA/RLh8jy
/Z8DFy8epI5H5/ij/nBLrj9E3EqI97DJcrtBDqKcLld/2Fu/q92D7+vhiNXiHp9Q8jf2H/i0ZMWH
JvOAvvH642PlFF01yyAMcl5DGOyTfWFY+/15HAHstzj/AClX95D7CPuqP2lo/IQP93kkPf6v1y+w
K8PmjWIxRxb3RH2uUVxbhR/lSw/pCI/8EMshrNPPkZD5S+5hLR6iPLgl8eH7Dv8AY4eYdPv7ut3a
PcqqhBbwz21zCGJJLGFZRIzEU+1FtTbqcuiccvpnEtco5ofVjmPu/HwRYv8AySu89tFZDqWvLNrQ
eH2p441/HLPy8+m/uIP3NP5mHU17wR96OsYPKl2RJYx2FwRuHgEL9O9VrkJY5R5ghsjkjLkQUbc6
dp90Q1zaxTkCgMiK5p/sgcgzUv0Jo3/LBbf8iY/6Yqsk0PTuB+qwpZzgfu57dRGykdK8OPIV6q2x
74qmGKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KpR5ot/Mc+nIugXcNleLNG8s04BX0VPxjdJfau24q
oZCeaqofyrqi6xoFpf6XqEV3Yupjhna0mgZvSYxnlHK6OpqncCvUbYqm3p6l/v8Ah/5Et/1VxVL9
U1ldOuLO0u7+GC51FzDZj6tK9X2G5VyFHJ1WrEDkyrWpAxVrTryDzDpaXdtNBd2ErSIPWtJVq0Mj
RODHM6sCrow3XIyiJCiLUhd+gZk/uLn6t4LD6yoPlH6xj/4XK/AiOVj4n7uTHhCQ61rmn6dfS6Xq
3mZIpIrVb2eG6s1aH6u8ot1rJxEZZpWChORc+GEQkOUj9n6kgEdUaPJKoeUD2ls3d7a2e1Y96lra
eFq/Tk+LL/Ov3i/0s/En3rJvJepv9jVyhHQvHNc0/wCkq4nyueMz+oY5e+H7WUc0xyr7vuLFIZdK
1HWIdEPm83F9c3N5YwWUmmGNHnsEWS5UELGlERxRq8W/ZJ3yiWjiekR7uMfdNtjq8keVfj4sii/L
/UYVC22rx29P2oLUxMaeJjmT8Mh+Rr6ZcPuv9MizOuyH6ql7xf6VDUPIc0dvNeajq9vJDbo00013
avOFVFJZj61xJ0G+Tx4M8OWabRkyRn9WPGf81KvL+lQ6zcTQaN5sf1LWOKa4toLS4suCTl1jDIss
FDygcFOqkfEBmQDqOuS/fCJaTDH0gB7jMfdNkkflbzlEoWHzW6DvytElJ+maSQ5YJT68J/zSPukG
EsfcTH7f91aPS0812cEktxrVvcpGpZi+nsWooqaLDOhJ26AZGXGf5o+B/wCKTGJHW03sLhLmxt7h
JBMk0SSLMqlA4ZQQwU1K1rWhybNXxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxVD6fpunabZx2WnWsN
lZxV9K2t41iiXkxZuKIAoqxJO3XFURiqGvNM02+aFr20humt2LwGaNJDGzKUZk5A8SVYqadsVefy
3H5m6Vq95pPlXy1ptv5XsZkWw4wpAHWRFkl4ILqBaepI3JxGKb0V2FCql83mD/nIhwkcflyxjDwR
8pl9DkJmlpKCG1BljCR7qQJeRAqByKqqhre0/MnVtQ1j/E/lDRr+6iseWnT3FpFM7crlTHbCRpPR
kjQLI/pmZG5heRUMGxVHTeZPztt9RttKg0aC5ne0nvru7lg5wxsb2VY7eOZbi0gZ1t/TCxlgx+0z
D4sVRTa9+edJmHl2xXhMIYY1aOQuhqfW5G9ipGOIUgjn8XLj8JVlUv1PS/zMsdYubvQ/K+iyTPqF
5LZaiLa2juI43KkTSym4jZ2uFJR+KBqD4jvXFUx8wa3+eltFEujaDp99OID6ztwWNp1nkSo530TI
rQqjhfipyNXqOJVTzyLffmHf29wnnfSrWwYwxcEtuLI0jvMJkNLi5qBGsXWnU9eiqp9p3l/QdNk9
XTtNtbKT0lg528EcTekhqkdUVfgWuy9BiqPxVxAIIIqDsQcVWxRRxRpFEixxRqFRFACqoFAABsAB
iq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY
q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq
7FXYq7FXYq7FVsskcUbyyMEjQFndjQBQKkknsMVQUMUt6TcXBlihba3gV3iYL/PJxKnk38p6D3ri
qr+jLb+ef/pIn/5rxVjmoaxbRa5FZWk8qR2jh7+czSOpI/3QqyPxJP7Xh88VTmHzFYzyenAskslC
3BArNxBAJoG6bjFUR+k/+XS4/wCRf9uKu/Sf/Lpcf8i/7cVd+k/+XS4/5F/24qgjrd1cSP8AVLeR
LeKqtNJCX5ODRgoDpstKE167dshZPJr4iTtyVdOvp9Rthc2d7bSxElSVhY0ZeoNJjhqXf+PmtT7x
8v2oPV9eudOvLSzN1aNc3DhmSRDEEgB/eSMxlNNqhffISlIEANU8kwREUSfLp800/Tejf8t9t/yN
T+uWuShLzzZ5etpY7dtQtzc3Ab6tF6gpIy0+AMKqGJIoOp7Yqxm3/NW7mjuXPk3zDCbeaeBUksXB
lNuFPOOlapJy/dsacqEdeqqZeUfPc3mSZ0/QGp6RHGsDGXU4DbhzPE0hSOteTwlOEo/ZbxxVlLuq
0B+0xoq9z8sVUo0nYyc5mBBpRQtBVR0qvif8+mKqnpvWvqN16fD418MVWOpRGd7hlRQSzngAABuS
Sv04oJpLdO1k398Y4ElNjxdorxuKrKY3UMETjyK/HTl/t5XHJxHbk048/HKgPT3pp6T0/vn+dE8K
fy/TljehL++Sz4LzkmuJTSC1QIWc1r4bKO5PQZRn1Ax7c5HkOp/He3YsJnvyiOZVrRpp7aOV3eN3
X4kqjUNKHfiK75ZimZRBIphkjwyIG6qY3G5menX9inWv8uTYJfBqf1m6EVuZJLYkx/XPgCmQKTRB
x+L7J36VzFhqhOdRFx5cXS/LvcmenMY3I+ru8kbyk9GvI8vVpXbp6lKfZ8Nun098ynGV8VdiqSaz
cXx1O3tYrT61AF9YxiRU5Orbc61+FKAjxNPDFVl/5j1CwSJ7vTREs80dvETcR/FLKwVFG3cnFV91
c+ZbmL6vBYizaYhGuzMj+kp+04QUJan2ffFUSP0boGk0HwwQgnqOcjncmpoCx6nsPYDFUDpUeo/W
5dUvbOZrqZPTiVDEFjhJDcRzdG6/zAfIGuKppbapHNevZmKSKeNPUYPwIpUCnJGcV3Bp1oR44qjM
VSjW9Wt7aSO0lmNskql5rgBtowacUKg/E3j2G/WmVZJgbOPmygbE06LzH5eijWKOcJGgCoojkAAG
wA+HEZYhRqMYFAoGz1Xy/penNaaGnrSPJI8FrGrDlLNIXYFmAAAZu52GJzDpuUS1Ma9O5Rul6FcW
wkuJ7yQ6hdEPdyIIypbsq80ZuK9BjDGRuTuVxYDHcn1Hny/U1p97dXGrSRQTvcWFupWaVxHQymhC
oUVOg+dfbbkxkTLbkuOZM6BuI+/8fjvMbu2tJFaaZF5pG6ifiC6I4+PiaEitMtcl5hqXl38iNe1a
81y81G2vb4XaXN7cLfNwS6solgDMiOI0aKNlVhxHYnemKp/+X1l+W2l2zad5KvIp7dXiuZba2n+s
/FNbiOGR2YuwEkEYKksOVOW++Ks1jQj4nNZCPiPYew6bYqk3mrWZdH0HUL6C1vbuZGSKOLTbb65c
q0xSJZUg5D1BEX5uP5QdvFVhXkTzT5wtb8WvmRtb1aPUJTDBdXmjQaXBZ/V3ELvI8Uj8hcSOrR16
r06HFWU3d1ZahqEkWr3sFrp0Erxw2DyqhuHgozvJyK8kXY8Rt45RXGd+QcThOWR4vpB5d/v/AFJx
DcWk99avaSRywCCdVaJlZPheIUBXbbLeo/Hc3n6h7j+hV1O7ltrRngCtMWCIHJ4hm6Fqb5VqMphG
483KwYxKVHkl2l3vl6OcgarbXepzt6cknrRGRnFAUVQ3wgE/ZGDBpxDcnimeZ/HIeScucz2G0RyC
aWJAtEJNBvv/ALI5PD9AYZfqSrVLq3mvXtNQvI7PT0aOPg0gja4kkHIR8mK7bfZXc5jZInNMwJqE
avzv9DkQkMUBIC5n7P2o2K7064NoLCaGaGOXj+4ZWVf3LkD4SQNsyJRAMQOV/oLREkiRPd+kImo9
H/nr/wAzf9b+P0dsualfFUPqF4LO1ab02lfZY4kBJZ22UbBj8zTFUJZXFvArvKJ5LqY8p5fq04qR
0VRwNFXsP4knFVPVU0rU4I4bqCSRYpY5k9S0mcAxsCaApsWWq198VRjaraqpZlnCqKk/V5+g/wBh
iqUW1i2vXK6lfCRLKM10+3V3jrvUSsUK16Aj8NgGZVT803+kaFps11cXM8Xppzd2urgiNOnIj1N6
nZR+0fAVIlGJkaHNBNCy8x0r88Py1tYy0sesyXUhJkkVmpua0B+sLy33LUFTvQbAZ38m5fJx/wA1
B6b5U1XSPMumrqFpDqVrBIqyRi7nmjZkYsFcBZn2PA5hZIGEjE9G+MrFouHSrbUJRMXuPqCEGBTc
3B9VgQRLvJ9lT9j/AIL+XKR6t+jAes3/AA/f5/q+a/UPK1nevbP9avYDayiZTFdTAtQEcGJZjxNd
6Ur45NtUvJOn6vY6IYNWbld/WJzXkWJT1CFYk/z05fTv8VSVVTVry4u7k6RYNxkYVvLgV/dIe1R+
0R71/wCJLVORJ4Q42WZkeCPx8vx+PJtt5TtbWERQX99HGvRVuCBvuT0yQhXI/c2RxcIoE/Z+pKIt
Cj1HWhcw3t5NBZwyLEz3MgV5JOPHmVpyjYCoXcEbkUK1jCRJ8mGKZMjRuP4/H43j+q/k/rE+sXNz
pd9o+l6XPeLdrpqaHYSkI0AiuY2mePk5uHXm0hXlT4elKWuQnn5f+RLrylZmO6lsby4lljMt9aWN
vp7elHAIY4jHbooZUkLMnI/ArcRsMVZviqyP7cv+uP8AiK+wxVJrnQtJ1k6pbalbJcRvMiEnZ+Ah
hfiHFGUVr0PfFUnPlea/tJ4NNuodOazurmKGSS0hvCsboiFVE32QVFDTqOuV4+vvaMH8X9Yo3TtN
ChtNguomuYYrv/TIYIoVR55gyfuUIVzH0YgUJG+5yJEZSZxy+uh0H6lx0JrG3+sXdyb2/eZVNzw9
EemZCyJ6akr8INK9TmJqdPCPrA9RIdlgzzPoPLdAy+T7i08xRa3LqVoNPhkklOn/AKMtvUaSQsQV
uR+9D0I3G5pv1zOnMRG7hwiZHZkMGl2VxpojkT4JkIbi1fheu1QSOh7ZRHSxMOGQ5t51EhPiB5Je
2hwzSXllbFIGtntZbWWWNbn0mjBPJRLX4qVAatRXIabGITnEchw/cy1EzOEZHmb+93l/Tf0YsOny
3EF3epK01zcQW8VmGHplFDRxGhYBh07de1byeKQA/hO/yP2tIFRJPXl807oPR/56/wDM3/V/h9Pf
LmpXxVLbpF1SRrTiGsImpdMRUSOpr6S+wP2z/setaKq/6I0r/lig/wCRSf0xVKvMfltLu1tlsFjt
JIru3lcxwIxdFkFUYfD8G/JvECmKpt+idK/5YoP+RSf0xVT1fVLfSrFpnAqqn0o6hAeIruTsqqOp
/jQYq+XPzL89XXmrUPq0U3HTIyHpUfvnI/vH4l1AA2VKnj3+KpzodDozjHFKJ4j7tvtdVqdSJGgd
lT8s/wAuG1e/h1O8s5L3SYZCggHFfrEwBIjBZk+EdXboB1yOv1nADAbS+5lpcPEeI/S+iLiOW30a
WF7OeJ5eAmlUW5U/EAIkjE4PAj92qA9D3Na87k5OdmFxO9fj9LoY/MZiUyRzxvTdF9FgPav1oZER
l3sBjnW5/HzQ2o3vmCye2H1e9nW4l9JvSjR2SoJ5sFuSAopuSRTDwS70+HP+d+Pmq+XLu91zTfr0
F8UT1HjCsjV+E7VpLsaUr+FRQl4D3r4cv534+ae6VpcOnW3pKxklY8p52+07nqT/AJ/jU4YQ4Qzx
YhAUlms3t3eynTdOj9Ubi6eoCgA0IJ7gHZh+0fh/n4xkeI0Px+Px1askuM8I+P4/F8u+mXF1renr
Ba2ekmS1dJWurr10VoiAD6h2+MsSdhlkRQb4RERQeZ3/AJ9/OfTNVv8AS7jyv9flivja2l7p9tqb
2hgmgWa3naV5AHVDzScrTi1Ke5ZMn/KzX/zB8wWs135v0ldGjJt4ba0KXkEzu1p6ty7pcu/7vm4E
dPiBDK24xV6JC7FSGILoeL08R3+kb4qpPbpP6qOXVeYNY3eM/YX9pGBxVDaTAkE+pRoXK/WVNZHe
Rt7eH9pyxxVj8k2rSX19o+nBeUtw81xcK1VjSSlObL9k/D9kfEf8kCpxblZiO91xMzIwj3/j8c/c
m2laHaaXfwCP95cSQTevcsAGchoaCg2VV6Ko2AyyGMRP48m/FhEJDvo7/JE+YJEi01pnZVSFldix
4igP68c+KU41EWbDsMExGVnlSW22m3utzC81QNFZDeGzNVZx1+Mfsr/k9W77UGXxgIGz6p9/Qf1f
1tcp2KG0fv8AenWlKqWEKIAqqCFUCgABNABhnzYBJNQu9QTV7uy05BJdXIjJIbaNQtOUhH2Bv/rH
9nrUY0NPMzlInhga36mug/X+BknLHgiOchfu+P6kVZaHBp89pKzeteySsJbgihoYpDxQfsrXt9+Z
YIEeGIqI6fFxySTZ5pnQ+j3/AL3/AJm/P/Pw7ZWrWpyCLTbqQzLbBYXP1hzxWP4T8Zbtx64QL2Ck
08fH556bbyS2dpbXbwWnFVZJLYAq3IKQDByFeNfi3oa5nx7NyGYjtys+XkfNxDrYcJl5/PzbP59w
f8sd7/yNtv8AqhmQOxsn86LT/KUO4tr+fMLbC0u69gZrUf8AMjAex5j+Ifan+UY9xZL5V87eYPMp
Z7PS7yC1VeX125lgSBjyZeKOLZuZBQ14A8e9KjMTUaUYucgT3Dm5GLOZ8oliX5mv5k1d/wBFteQa
dDIhNyLmV/VZIjQr+6hX90GIOy71FaimZHZ8sOOXHMGRHKv7WnVjJMcMaHewbSPyp1u88wNZ3rRx
6fBxa71CEhxQ0rGi0VzKzNxClBv45tsvauOOO47z6Cvv58vI7+XTX49DOU6P09/4/H6fSGg6NaaR
p8dUEEdvCI4Y2aoggQV4lj+0aVdu59gM5acySZHq7wARHkHW2o6fdTre3F1CiL/vHA0igqCKGRwT
UOwNKH7I9ycpEgdyWiOSMjxEjyR36W0v/lsg/wCRif1yfHHvbfFh3h36W0v/AJbIP+Rif1x4496+
LDvCE0v/AA5pdr9VsZ7eGD1JJeAkT7UrmRu/i23tjxx718WHeFPUtYWVlsdNkWa5mpyeNgeKmvRt
xXY1P7I368VaEp3sGrJmv0x3P4/H4FjtM06KxtxElC5A9RwKVIFAAN6KvRR2GThGg248YiKRZAII
IqDsQck2KP1Kz/3xH/wC/wBMVXJa2yMGSFFYdGVQD+GKuPwzhtuLjif9Ybjv8+2KoW/1Sx0uwv8A
Ur+T0bKyVp7mWjPxjjjDM3FFLGg7CpxViFl+YenaveXtn5PurbUtUuDJcxQzi5hAW1ljsrjlziRf
gdf569wCOqrrzUNfsreS5hN4H+s3YvLXS7RL7lKUQIQ0npsoRzUbfF7ZXj6+9owfxf1im2nahqy2
0V3cRz3dxFFfExTQ/VbhhHMgVVhT1AahRwIPxA1ye1/jyZn6h7j+hSl1TWtRgM0+n/UtP9dEjW45
Jcc0k4k8CKFGpUHbMjGI9ObI2ltvq3mpfNtvpslxqslo80rPM+kxLZ+krMFja6R6r9jZ+O4I6ZQy
ZPBLrK6UTa28DThXMIaVqFqmlRwXav8AlZaRHi3LHekh1O91y0e6ulFwl3HLbveW+l263rSRpC7N
Eol9PjzoAG7HbHJVCuW6hGeWr/U7xIH1BrtpPXRoxe2YsnVXtGbjxUsGIYnl4HbIR5FLIaj0f+et
O3+/fl/n498il5j+YfmG48wi80DSriOKxjQLdXQekjOWB/dIzRI9FB48n4k9VYCmZOGJj6uXc1ZD
EijuxXQvKtnp8sks9vbXU8soklnNvSGQCVuA9Of1p4kSMhfTaQgkGnGuWnNPnZtpOOJ2oV+P7fj7
kVYeTdK5RIbU3MsTXKASysi0nZ2MbpEyMxjQlULjkoAIPIVyf5qfevgx7gybQ/y78uz3rX9/Hbkt
Ikiwxkqp4IqcfTXjEFruRxNWNdiFIqlqpgUCUjTwJsh6JbxW0EKQ26JDBEqxxxooRFRRRVVRQAAb
AZiEkmy5IAA2QWs2umXVu0V4iszqyxtXi4JUglW2IopNT0pWu2GMiEEAofytoMNnZwH4mhhqbbnW
rFixMpU/ZBLt6afsqf5iaCUrNlIFCk/ljSWN4pByRwVdfEEUIwEWpFikP+jbf+ef/pIn/wCa8jwD
8Fh4Y8/mXfo23/nn/wCkif8A5rx4B+Cvhjz+Zd+jbf8Ann/6SJ/+a8eAfgr4Y8/mXfo23/nn/wCk
if8A5rx4B+Cvhjz+ZXW9hawTNMisZnUI0ju8jcVJIALlqCrdsREDdMcYBvqiMkzdirsVdiq2VCyE
KaNsVO9Kg1Fadq9cVS7U9OXWNJvrD61c2AvFMZu7KT0bqLkigtFIOfB18RirG9E/KyPTNSsL+TzX
5j1N7DmVgv8AUPVglZ5GflNGsaK5UOUXsF27DFU50u9ET6hBEnrXb3sxSEGlBsObtvxX3+6p2ymE
qsdbcTFOuIDc8RTW1svTkNxO3rXbji0lKBVNDwjH7K7fM965YI9TzciMK3O5QvmEgWKE7ATR1P8A
ssuxc2RVPUm1DaJjFY95hUPKP+K/5U/yup7dmwVw+9eaNjjjjjWONQiIAFUCgAHYZAlKTxXaQa1q
ShTJPJ6HpQr9pqR7nfooruTlxjcQxvdMbe0kEn1i5f1LgiigfYjB/ZQfrY7n2GwrMugTS7/dPT/d
vv8A79+f+fh2yKUHDoUcMMcSXMnCNQi1S3JoooP91Yq3LpXCJ3WaSRlUlUCWwLEDYCsXfFXnUPnr
zN9Z071fKOsyWF0wjvbqO1jSW2eqx8vq8luGkjMtW5chSP4iK7Yqj/KvnHU9b1G0srzyvrujC9Mr
R3N3aW4hjiijEitcP6I9J5OQVUO/Ko7Yqzj9Dr/y0Sf8i7f/AKpYqtfQbaR4mmleVIn5+kVhVWPE
ijcI0JHxdK/PFUyxV2KoDXb69sNJubuytWvbqJQYrZK1YlgOgBJoDWgxVh9r+aGrGFJLrybri/WI
fXtlhtXZgWuDD6M6tw9J1Rkc1qCOZGy7qq95+a9lZRrJd+XtdgiZuHqyWPpxhhcR29Gd3VRvL6gJ
6orMOmKtD803ku4raDyh5icTW63C3TWIW2XnyojyeoWD/DuAppUYqraV+Y13ey2sE3lTXLKa5kVS
01qfRjR3hXnJID8PET1YEbcH6hQWVZnirsVdirsVdiqkLfizskjJ6h5MBxpWlK7g+GKrvTetfUbr
0+Hxr4YqoG1ECTSwV9RgXZUWNWkcLTc8ep98AAQIgcmC2H5m6y0lut75U10JPL6BeCyc+m6/VwzS
LKsdIS0zlZAfsLuOQYKUrH/MjUbiw1Ga48m66YbWSFbW3ez5y3Eb231h5DF6ZCtGytHxUt+84io5
bEGlRKfmhNIbhYvKnmYPDNNBGZ9OEccjQyRIrhlLt6Upn+F+P2VdqfDgVvTPzNuL5LCvlbzLaNev
BHItzp4QwfWHePnKalQsZj5yfyqymnbFWbLaKsryqxWSSnqMFQFgvQE8amg2w2q/0npT1n6daJ4U
/lwK36K8OHblz6Dry5+Hjiq/FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX
Yq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FVnrxev6
HL97x58P8mtK/fiq/FXYq7FXYq7FXYq//9k=
+
+
+
+ uuid:9E3E5C9A8C81DB118734DB58FDDE4BA7
+ xmp.did:f0150d50-93e9-44ee-9987-67b14abadb2c
+ uuid:ca498e5a-9c95-ae49-b1f7-ae0db173dfb0
+ proof:pdf
+
+ uuid:f48df553-7bcd-7645-b9b2-09b4b834cc1a
+ xmp.did:e79174c2-087c-4ba0-bd4e-aa38a2018390
+ uuid:9E3E5C9A8C81DB118734DB58FDDE4BA7
+ proof:pdf
+
+
+
+
+ saved
+ xmp.iid:e79174c2-087c-4ba0-bd4e-aa38a2018390
+ 2016-11-09T14:04:33-08:00
+ Adobe Illustrator CC 2015 (Macintosh)
+ /
+
+
+ saved
+ xmp.iid:f0150d50-93e9-44ee-9987-67b14abadb2c
+ 2017-06-11T14:20:04-07:00
+ Adobe Illustrator CC 2017 (Macintosh)
+ /
+
+
+
+
+
+
+ EmbedByReference
+
+ /Users/pdollar/Dropbox (Personal)/papers/17ICCV-dense/figures/loss-raw.pdf
+ 0
+ 0
+
+
+
+ EmbedByReference
+
+ /Users/pdollar/Dropbox (Personal)/papers/17ICCV-dense/figures/net-image.jpg
+ 0
+ 0
+
+
+
+ EmbedByReference
+
+ /Users/pdollar/Dropbox (Personal)/papers/17ICCV-dense/figures/loss-raw.pdf
+ 0
+ 0
+
+
+
+
+
+
+
+ /Users/pdollar/Dropbox (Personal)/papers/17ICCV-dense/figures/loss-raw.pdf
+ 0
+ 0
+
+
+ /Users/pdollar/Dropbox (Personal)/papers/17ICCV-dense/figures/net-image.jpg
+ 0
+ 0
+
+
+ /Users/pdollar/Dropbox (Personal)/papers/17ICCV-dense/figures/loss-raw.pdf
+ 0
+ 0
+
+
+
+ Basic RGB
+ 1
+ False
+ False
+
+ 213.414247
+ 130.514291
+ Points
+
+
+
+
+ MyriadPro-Regular
+ Myriad Pro
+ Regular
+ Open Type
+ Version 2.106;PS 2.000;hotconv 1.0.70;makeotf.lib2.5.58329
+ False
+ MyriadPro-Regular.otf
+
+
+ LAAAAA+Helvetica
+ LAAAAA+Helvetica
+ Unknown
+ Version 2.106;PS 2.000;hotconv 1.0.70;makeotf.lib2.5.58329
+ False
+ MyriadPro-Regular.otf
+
+
+
+
+
+ Cyan
+ Magenta
+ Yellow
+ Black
+
+
+
+
+
+ Default Swatch Group
+ 0
+
+
+
+ White
+ RGB
+ PROCESS
+ 255
+ 255
+ 255
+
+
+ Black
+ RGB
+ PROCESS
+ 0
+ 0
+ 0
+
+
+ RGB Red
+ RGB
+ PROCESS
+ 255
+ 0
+ 0
+
+
+ RGB Yellow
+ RGB
+ PROCESS
+ 255
+ 255
+ 0
+
+
+ RGB Green
+ RGB
+ PROCESS
+ 0
+ 255
+ 0
+
+
+ RGB Cyan
+ RGB
+ PROCESS
+ 0
+ 255
+ 255
+
+
+ RGB Blue
+ RGB
+ PROCESS
+ 0
+ 0
+ 255
+
+
+ RGB Magenta
+ RGB
+ PROCESS
+ 255
+ 0
+ 255
+
+
+ R=193 G=39 B=45
+ RGB
+ PROCESS
+ 192
+ 39
+ 45
+
+
+ R=237 G=28 B=36
+ RGB
+ PROCESS
+ 236
+ 28
+ 36
+
+
+ R=241 G=90 B=36
+ RGB
+ PROCESS
+ 240
+ 90
+ 36
+
+
+ R=247 G=147 B=30
+ RGB
+ PROCESS
+ 246
+ 146
+ 30
+
+
+ R=251 G=176 B=59
+ RGB
+ PROCESS
+ 250
+ 175
+ 59
+
+
+ R=252 G=238 B=33
+ RGB
+ PROCESS
+ 251
+ 237
+ 33
+
+
+ R=217 G=224 B=33
+ RGB
+ PROCESS
+ 216
+ 223
+ 33
+
+
+ R=140 G=198 B=63
+ RGB
+ PROCESS
+ 139
+ 197
+ 63
+
+
+ R=57 G=181 B=74
+ RGB
+ PROCESS
+ 57
+ 180
+ 74
+
+
+ R=0 G=146 B=69
+ RGB
+ PROCESS
+ 0
+ 145
+ 69
+
+
+ R=0 G=104 B=55
+ RGB
+ PROCESS
+ 0
+ 104
+ 55
+
+
+ R=34 G=181 B=115
+ RGB
+ PROCESS
+ 34
+ 180
+ 115
+
+
+ R=0 G=169 B=157
+ RGB
+ PROCESS
+ 0
+ 168
+ 156
+
+
+ R=41 G=171 B=226
+ RGB
+ PROCESS
+ 41
+ 170
+ 225
+
+
+ R=0 G=113 B=188
+ RGB
+ PROCESS
+ 0
+ 113
+ 187
+
+
+ R=46 G=49 B=146
+ RGB
+ PROCESS
+ 46
+ 49
+ 145
+
+
+ R=27 G=20 B=100
+ RGB
+ PROCESS
+ 27
+ 20
+ 100
+
+
+ R=102 G=45 B=145
+ RGB
+ PROCESS
+ 102
+ 45
+ 144
+
+
+ R=147 G=39 B=143
+ RGB
+ PROCESS
+ 146
+ 39
+ 142
+
+
+ R=158 G=0 B=93
+ RGB
+ PROCESS
+ 157
+ 0
+ 93
+
+
+ R=212 G=20 B=90
+ RGB
+ PROCESS
+ 211
+ 20
+ 90
+
+
+ R=237 G=30 B=121
+ RGB
+ PROCESS
+ 236
+ 30
+ 121
+
+
+ R=199 G=178 B=153
+ RGB
+ PROCESS
+ 198
+ 177
+ 152
+
+
+ R=153 G=134 B=117
+ RGB
+ PROCESS
+ 152
+ 133
+ 117
+
+
+ R=115 G=99 B=87
+ RGB
+ PROCESS
+ 115
+ 99
+ 87
+
+
+ R=83 G=71 B=65
+ RGB
+ PROCESS
+ 83
+ 71
+ 65
+
+
+ R=198 G=156 B=109
+ RGB
+ PROCESS
+ 197
+ 155
+ 109
+
+
+ R=166 G=124 B=82
+ RGB
+ PROCESS
+ 165
+ 124
+ 82
+
+
+ R=140 G=98 B=57
+ RGB
+ PROCESS
+ 139
+ 98
+ 57
+
+
+ R=117 G=76 B=36
+ RGB
+ PROCESS
+ 117
+ 76
+ 36
+
+
+ R=96 G=56 B=19
+ RGB
+ PROCESS
+ 96
+ 56
+ 19
+
+
+ R=66 G=33 B=11
+ RGB
+ PROCESS
+ 66
+ 33
+ 11
+
+
+ R=254 G=206 B=149
+ RGB
+ PROCESS
+ 253
+ 205
+ 148
+
+
+
+
+
+ Cold
+ 1
+
+
+
+ C=56 M=0 Y=20 K=0
+ RGB
+ PROCESS
+ 101
+ 199
+ 207
+
+
+ C=51 M=43 Y=0 K=0
+ RGB
+ PROCESS
+ 130
+ 138
+ 196
+
+
+ C=26 M=41 Y=0 K=0
+ RGB
+ PROCESS
+ 185
+ 154
+ 200
+
+
+
+
+
+ Grays
+ 1
+
+
+
+ R=0 G=0 B=0
+ RGB
+ PROCESS
+ 0
+ 0
+ 0
+
+
+ R=26 G=26 B=26
+ RGB
+ PROCESS
+ 26
+ 26
+ 26
+
+
+ R=51 G=51 B=51
+ RGB
+ PROCESS
+ 51
+ 51
+ 51
+
+
+ R=77 G=77 B=77
+ RGB
+ PROCESS
+ 77
+ 77
+ 77
+
+
+ R=102 G=102 B=102
+ RGB
+ PROCESS
+ 102
+ 102
+ 102
+
+
+ R=128 G=128 B=128
+ RGB
+ PROCESS
+ 128
+ 128
+ 128
+
+
+ R=153 G=153 B=153
+ RGB
+ PROCESS
+ 152
+ 152
+ 152
+
+
+ R=179 G=179 B=179
+ RGB
+ PROCESS
+ 178
+ 178
+ 178
+
+
+ R=204 G=204 B=204
+ RGB
+ PROCESS
+ 203
+ 203
+ 203
+
+
+ R=230 G=230 B=230
+ RGB
+ PROCESS
+ 229
+ 229
+ 229
+
+
+ R=242 G=242 B=242
+ RGB
+ PROCESS
+ 241
+ 241
+ 241
+
+
+
+
+
+
+ Adobe PDF library 15.00
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
endstream
endobj
3 0 obj
<>
endobj
9 0 obj
<>/Font<>/ProcSet[/PDF/Text]/Properties<>>>/Thumb 12 0 R/TrimBox[0.0 0.0 213.414 130.514]/Type/Page>>
endobj
10 0 obj
<>stream
+H[e
?L`הꦪWÀ!
yȄ@B`fvYKRv}:uQI*oxwwMno{G>ԤRsn_AZS㐥iLɚz17I[{
+χ\X_2rǧ۷f
+~LKnBo~OX5^'HV.a֔g))z#O|xi:oXk
,&x|?o6eO
+6/j#&o_J?,l}*OlT:>-W|J|0Nb5A~1b|o3_Vϛy&f\W粇o _?aeO--WOkLYه鸴\RlRSivNa^yJ
5q==e;Qt{VXqV:W<#5x֕X>fʰZp&Y2mvX*}1V@tx~qCe3 ~EǒN,iA*BtsBKw)#GJxE7b2ClO8052SVS%5:X)LTL-\cDԕ*'eENL8X`1*9y4N/]G[SK_EgDカkhWsME"LcX:2[bqE+sWVTܾs$ݓOS9^D1c؍j(\s4CuX.0pay(lGc]4fMflq'=%X!L0*V)H5)+<̢,J wW1VGk]tA%"å+Ę&!W-IrsI,9+>[u]ɤnE]I.
+)
˥iKd7Jy^Led6WH͍Bus/^
XUz(G({ݕ^n:%fKu-u4Wqp>KPA
-1 &(ս!;KmtKsOeZۈ.i=\knvޑD
+z^4trC}+mK ~O)m=HBR궩-K+ᦆԷPB)yvmWGN+&_/.]K]Fy͡4rY5uKyemeϥ۽tnWǸq'{~^%]n}~){Kz/;:z/=E,GA"dX$>Q!} F3]6clډΦEfQ:c`
63X48e!gs8~6VS
,lt?Ta:g
QPYNTT_nwHf+5K0{~ P6,!*j|%dgC
+w`Q1#3f,ZEw7zN9UXgN]>xo*{ tFT0+HU ^>pU SAIx; {.k6S&X[z^qR$)џiA8e(ޝ^Qi&ᔍm1W~pyv$Ϣ:BS
'Ԏx6l/t
ifSpE