mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-16 11:31:49 +01:00
Add FAIRK2 time reasoning
This commit is contained in:
@ -58,11 +58,11 @@
|
||||
|
||||
\item[Necessity] \marginnote{Necessity}
|
||||
Members of a category enjoy some properties
|
||||
(e.g. $(\text{x} \in \texttt{Car}) \rightarrow \texttt{hasWheels(x)}$).
|
||||
(e.g. $(\text{x} \in \texttt{Car}) \Rightarrow \texttt{hasWheels(x)}$).
|
||||
|
||||
\item[Sufficiency] \marginnote{Sufficiency}
|
||||
Sufficient conditions to be part of a category\\
|
||||
(e.g. $\texttt{hasPlate(x)} \land \texttt{hasWheels(x)} \rightarrow \texttt{x} \in \texttt{Car}$).
|
||||
(e.g. $\texttt{hasPlate(x)} \land \texttt{hasWheels(x)} \Rightarrow \texttt{x} \in \texttt{Car}$).
|
||||
|
||||
\item[Category-level properties] \marginnote{Category-level properties}
|
||||
Category themselves can enjoy properties\\
|
||||
@ -70,7 +70,7 @@
|
||||
|
||||
\item[Disjointness] \marginnote{Disjointness}
|
||||
Given a set of categories $S$, the categories in $S$ are disjoint iff they all have different objects:
|
||||
\[ \texttt{disjoint($S$)} \iff (\forall c_1, c_2 \in S, c_1 \neq c_2 \rightarrow c_1 \cap c_2 = \emptyset) \]
|
||||
\[ \texttt{disjoint($S$)} \iff (\forall c_1, c_2 \in S, c_1 \neq c_2 \Rightarrow c_1 \cap c_2 = \emptyset) \]
|
||||
|
||||
\item[Exhaustive decomposition] \marginnote{Exhaustive decomposition}
|
||||
Given a category $c$ and a set of categories $S$, $S$ is an exhaustive decomposition of $c$ iff
|
||||
@ -92,7 +92,7 @@ Objects (meronyms) are part of a whole (holonym).
|
||||
|
||||
Properties:
|
||||
\begin{descriptionlist}
|
||||
\item[Transitivity] $\texttt{partOf(x, y)} \land \texttt{partOf(y, z)} \rightarrow \texttt{partOf(x, z)}$
|
||||
\item[Transitivity] $\texttt{partOf(x, y)} \land \texttt{partOf(y, z)} \Rightarrow \texttt{partOf(x, z)}$
|
||||
\item[Reflexivity] $\texttt{partOf(x, x)}$
|
||||
\end{descriptionlist}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user