DAS small changes

This commit is contained in:
2025-04-26 18:08:17 +02:00
parent 5484e66406
commit 2ad67a3625
5 changed files with 23 additions and 21 deletions

View File

@ -284,7 +284,7 @@
\end{theorem} \end{theorem}
\begin{remark} \begin{remark}
By \Cref{th:lti_continuous}, row/column stochasticity is not required for consensus. Instead, the requirement is for the matrix to be Laplacian. By \Cref{th:lti_continuous}, row/column stochasticity is not required for consensus. Instead, the requirement is for the matrix to be the Laplacian.
\end{remark} \end{remark}
\end{description} \end{description}
@ -314,7 +314,7 @@
\end{lemma} \end{lemma}
\begin{lemma} \phantomsection\label{th:connected_simple_eigenvalue} \begin{lemma} \phantomsection\label{th:connected_simple_eigenvalue}
If a weighted digraph $G$ is strongly connected, then $\lambda = 0$ is a simple eigenvalue. If a weighted digraph $G$ is strongly connected, then $\lambda = 0$ is a simple eigenvalue of $\matr{L}$.
\end{lemma} \end{lemma}
\begin{theorem}[Continuous-time consensus] \marginnote{Continuous-time consensus} \begin{theorem}[Continuous-time consensus] \marginnote{Continuous-time consensus}

View File

@ -3,7 +3,7 @@
\begin{description} \begin{description}
\item[Leader-follower network] \marginnote{Leader-follower network} \item[Leader-follower network] \marginnote{Leader-follower network}
Consider agents partitioned into $N_f$ followers and $N-N_f$ leaders. Consider $N$ agents partitioned into $N_f$ followers and $N-N_f$ leaders.
The state vector can be partitioned as: The state vector can be partitioned as:
\[ \x = \begin{bmatrix} \x_f \\ \x_l \end{bmatrix} \] \[ \x = \begin{bmatrix} \x_f \\ \x_l \end{bmatrix} \]
@ -15,7 +15,7 @@
\] \]
where $\lap_f$ is the followers' Laplacian, $\lap_l$ the leaders', and $\lap_{fl}$ is the part in common. where $\lap_f$ is the followers' Laplacian, $\lap_l$ the leaders', and $\lap_{fl}$ is the part in common.
Assume that leaders and followers run the same Laplacian-based distributed control law (i.e., an normal averaging system), the system can be formulated as: Assume that leaders and followers run the same Laplacian-based distributed control law (i.e., a normal averaging system), the system can be formulated as:
\[ \[
\begin{bmatrix} \dot{\x}_f(t) \\ \dot{\x}_l(t) \end{bmatrix} = \begin{bmatrix} \dot{\x}_f(t) \\ \dot{\x}_l(t) \end{bmatrix} =
- \begin{bmatrix} \lap_f & \lap_{fl} \\ \lap_{fl}^T & \lap_l \end{bmatrix} - \begin{bmatrix} \lap_f & \lap_{fl} \\ \lap_{fl}^T & \lap_l \end{bmatrix}
@ -30,7 +30,7 @@
\begin{bmatrix} \begin{bmatrix}
\dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \\ \dot{x}_4(t) \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \\ \dot{x}_4(t)
\end{bmatrix} = \end{bmatrix} =
\begin{bmatrix} - \begin{bmatrix}
\begin{tabular}{ccc|c} \begin{tabular}{ccc|c}
1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\ -1 & 2 & -1 & 0 \\
@ -122,7 +122,7 @@
\x_f^T \lap_f \x_f &\geq 0 & & \forall \x_f \x_f^T \lap_f \x_f &\geq 0 & & \forall \x_f
\end{aligned} \end{aligned}
\] \]
\item The only case when $\x^T \lap \x = 0$ for $\x \neq 0$ is with $\x = \alpha\vec{1}$ for $\alpha \neq 0$. As $\forall \x_f: \bar{\x} \neq \alpha\vec{1}$, it holds that $\forall \x_f: \x_f^T \lap_f \x_f \neq 0$. \item The only case when $\x^T \lap \x = 0$ for $\x \neq 0$ is with $\x = \alpha\vec{1}$ for $\alpha \neq 0$. As $\forall \x_f: \bar{\x} \neq \alpha\vec{1}$, it holds that $\forall \x_f \neq 0: \x_f^T \lap_f \x_f \neq 0$.
\end{enumerate} \end{enumerate}
Therefore, $\lap_f$ is positive definite as $\forall \x_f \neq 0: \x_f^T \lap_f \x_f > 0$. Therefore, $\lap_f$ is positive definite as $\forall \x_f \neq 0: \x_f^T \lap_f \x_f > 0$.
\end{proof} \end{proof}
@ -182,7 +182,7 @@
Therefore, we have that: Therefore, we have that:
\[ \[
\begin{aligned} \begin{aligned}
\left( \sum_{j=1}^N a_{ij} \right) x_{E,i} &= \sum_{j=1}^N a_{ij} x_{E,j} & & \forall i \in \{ 1, \dots, N_f \} \\ \left( \sum_{k=1}^N a_{ik} \right) x_{E,i} &= \sum_{j=1}^N a_{ij} x_{E,j} & & \forall i \in \{ 1, \dots, N_f \} \\
x_{E,i} &= \sum_{j=1}^N \frac{a_{ij}}{\sum_{k=1}^N a_{ik}} x_{E,j} & & \forall i \in \{ 1, \dots, N_f \} \\ x_{E,i} &= \sum_{j=1}^N \frac{a_{ij}}{\sum_{k=1}^N a_{ik}} x_{E,j} & & \forall i \in \{ 1, \dots, N_f \} \\
\end{aligned} \end{aligned}
\] \]
@ -211,7 +211,7 @@
\end{description} \end{description}
\begin{theorem}[Containment with non-static leaders non-equilibrium] \begin{theorem}[Containment with non-static leaders non-equilibrium]
Naive containment with non-static leaders do not have an equilibrium. Naive containment with non-static leaders does not have an equilibrium.
\begin{proof} \begin{proof}
Ideally, the equilibria for followers' and leader's dynamics are: Ideally, the equilibria for followers' and leader's dynamics are:
@ -235,7 +235,7 @@
\end{split} \end{split}
\] \]
By inspecting the value of the containment error $\vec{e}(t)$ when it reaches equilibrium we have that: By inspecting the value of the containment error $\vec{e}(t)$ when it reaches equilibrium, we have that:
\[ \[
\begin{split} \begin{split}
0 &= \dot{\vec{e}}(t) \\ 0 &= \dot{\vec{e}}(t) \\
@ -331,7 +331,7 @@
\begin{description} \begin{description}
\item[Containment with discrete-time] \marginnote{Containment with discrete-time} \item[Containment with discrete-time] \marginnote{Containment with discrete-time}
Containment can be discretized using the forward-Eurler discretization. Its dynamics is defined as: Containment can be discretized using the forward-Euler discretization. Its dynamics is defined as:
\[ \[
\begin{aligned} \begin{aligned}
\dot{\x}_i(t) &= - \sum_{j \in \mathcal{N}_i} a_{ij} (x_i(t) - x_j(t)) & & \forall i \in \{1, \dots, N_f\} \\ \dot{\x}_i(t) &= - \sum_{j \in \mathcal{N}_i} a_{ij} (x_i(t) - x_j(t)) & & \forall i \in \{1, \dots, N_f\} \\
@ -373,5 +373,5 @@
\[ \[
\dot{\x}(t) = - \lap \otimes \matr{I}_d \x(t) \dot{\x}(t) = - \lap \otimes \matr{I}_d \x(t)
\] \]
where $\otimes$ is the Kronecker product. where $\otimes$ is the Kronecker product (i.e., apply the same matrix across each dimension).
\end{description} \end{description}

View File

@ -6,7 +6,7 @@
Problem where $N$ agents want to optimize their positions $\z_i \in \mathbb{R}^2$ to perform multi-robot surveillance in an environment with: Problem where $N$ agents want to optimize their positions $\z_i \in \mathbb{R}^2$ to perform multi-robot surveillance in an environment with:
\begin{itemize} \begin{itemize}
\item A static target to protect $\r_0 \in \mathbb{R}^2$. \item A static target to protect $\r_0 \in \mathbb{R}^2$.
\item Static intruders/opponents $\r_i \in \mathbb{R}^2$, each assigned to an agent $i$. \item Static intruders/opponents $\r_i \in \mathbb{R}^2$, each assigned to the respective agent $i$.
\end{itemize} \end{itemize}
The average position of the agents define the barycenter: The average position of the agents define the barycenter:
@ -16,7 +16,7 @@
\[ \[
l_i(\z_i, \sigma(\z)) = l_i(\z_i, \sigma(\z)) =
\gamma_i \underbrace{\Vert \z_i - \r_i \Vert^2}_{\text{close to opponent}} + \gamma_i \underbrace{\Vert \z_i - \r_i \Vert^2}_{\text{close to opponent}} +
\underbrace{\Vert \sigma(\z) - \r_0 \Vert^2}_{\text{barycenter close to protectee}} \underbrace{\Vert \sigma(\z) - \r_0 \Vert^2}_{\text{barycenter close to target}}
\] \]
Note that the opponent component only depends on local variables while the target component needs global information. Note that the opponent component only depends on local variables while the target component needs global information.
@ -69,8 +69,9 @@
&\frac{\partial}{\partial z_i} \left.\left( \sum_{j=1}^{N} l_j(z_j, \sigma(z_1, \dots, z_N)) \right) \right|_{z_j=z_j^k} \\ &\frac{\partial}{\partial z_i} \left.\left( \sum_{j=1}^{N} l_j(z_j, \sigma(z_1, \dots, z_N)) \right) \right|_{z_j=z_j^k} \\
&= &=
\left.\frac{\partial}{\partial z_i} l_i(z_i, \sigma) \right|_{\substack{z_i = z_i^k,\\\sigma = \sigma(\z^k)}} + \left.\frac{\partial}{\partial z_i} l_i(z_i, \sigma) \right|_{\substack{z_i = z_i^k,\\\sigma = \sigma(\z^k)}} +
\left.\left(\sum_{j=1}^{N} \frac{\partial}{\partial \sigma} l_j(z_j, \sigma) \right)\right|_{\substack{z_j = z_j^k,\\\sigma = \sigma(\z^k)}} \cdot \sum_{j=1}^{N} \left( \left. \left( \frac{\partial}{\partial \sigma} l_j(z_j, \sigma) \right)\right|_{\substack{z_j = z_j^k,\\\sigma = \sigma(\z^k)}}
\left.\frac{\partial}{\partial z_i} \sigma(z_1, \dots, z_N)\right|_{\substack{z_j=z_j^k}} \cdot
\left.\frac{\partial}{\partial z_i} \sigma(z_1, \dots, z_N)\right|_{\substack{z_j=z_j^k}} \right)
\end{split} \end{split}
\] \]

View File

@ -16,7 +16,7 @@
\[ \[
F_{e,i}(x) = -a_{i,i-1}(x_i-x_{i-1}) - a_{i,i+1}(x_i - x_{i+1}) F_{e,i}(x) = -a_{i,i-1}(x_i-x_{i-1}) - a_{i,i+1}(x_i - x_{i+1})
\] \]
Equivalently, it is possible to express the elastic force as the negative gradient of the elastic energy: Equivalently, it is possible to express the elastic force as the negative gradient of the elastic potential energy:
\[ \[
F_{e,i}(x) = -\frac{\partial}{\partial x_i}\left( \frac{1}{2} a_{i,i-1} \Vert x_i - x_{i-1} \Vert^2 + \frac{1}{2} a_{i,i+1} \Vert x_i - x_{i+1} \Vert^2 \right) F_{e,i}(x) = -\frac{\partial}{\partial x_i}\left( \frac{1}{2} a_{i,i-1} \Vert x_i - x_{i-1} \Vert^2 + \frac{1}{2} a_{i,i+1} \Vert x_i - x_{i+1} \Vert^2 \right)
\] \]
@ -86,7 +86,7 @@
\end{figure} \end{figure}
\end{remark} \end{remark}
By adding a damping coefficient (i.e., dispersion of velocity) $c=1$, the overall system dynamics can be defined as: By adding a constant damping coefficient (i.e., dispersion of velocity) $c=1$, the overall system dynamics can be defined as:
\[ \[
\begin{split} \begin{split}
\dot{x}_i &= v_i \\ \dot{x}_i &= v_i \\
@ -148,7 +148,7 @@
\begin{description} \begin{description}
\item[Formation control] \marginnote{Formation control} \item[Formation control] \marginnote{Formation control}
Consider $N$ agents with states $\x_i(t) \in \mathbb{R}^d$ and communicating according to a fixed undirected graph $G$, and a set of distances $d_{ij} = d_{ji}$. The goal is to position each agent respecting the desired distances between them: Consider $N$ agents with states $\x_i(t) \in \mathbb{R}^d$ and communicating according to a fixed undirected graph $G$. The goal is to position each agent respecting the desired distances $d_{ij} = d_{ji}$ between them:
\[ \[
\forall (i,j) \in E: \Vert \x_i^\text{form} - \x_j^\text{form} \Vert = d_{ij} \forall (i,j) \in E: \Vert \x_i^\text{form} - \x_j^\text{form} \Vert = d_{ij}
\] \]

View File

@ -307,8 +307,9 @@
\[ \[
\begin{aligned} \begin{aligned}
V(\tilde{\z}^{k+1}) - V(\tilde{\z}^k) &= \Vert \tilde{\z}^{k+1} \Vert^2 - \Vert \tilde{\z}^k \Vert^2 \\ V(\tilde{\z}^{k+1}) - V(\tilde{\z}^k) &= \Vert \tilde{\z}^{k+1} \Vert^2 - \Vert \tilde{\z}^k \Vert^2 \\
&= \cancel{\Vert \tilde{\z}^k \Vert^2} - 2\alpha(\vec{u}^k)^T\tilde{\z}^k + \alpha^2 \Vert \vec{u}^k \Vert^2 - \cancel{\Vert \tilde{\z}^k \Vert^2} &&& \text{\Cref{th:strong_convex_lipschitz_gradient}} \\ &= \Vert \tilde{\z}^{k} - \alpha \vec{u}^{k} \Vert^2 - \Vert \tilde{\z}^k \Vert^2 \\
&\leq -2\alpha\gamma_1 \Vert\tilde{\z}^k\Vert^2 + \alpha(\alpha-2\gamma_2) \Vert\vec{u}^k\Vert^2 &= \cancel{\Vert \tilde{\z}^k \Vert^2} - 2\alpha(\vec{u}^k)^T\tilde{\z}^k + \alpha^2 \Vert \vec{u}^k \Vert^2 - \cancel{\Vert \tilde{\z}^k \Vert^2} \\
&\leq -2\alpha\gamma_1 \Vert\tilde{\z}^k\Vert^2 + \alpha(\alpha-2\gamma_2) \Vert\vec{u}^k\Vert^2 &&& \text{\Cref{th:strong_convex_lipschitz_gradient}}
\end{aligned} \end{aligned}
\] \]
@ -344,7 +345,7 @@
\[ \[
\min_{\z} \frac{1}{2}\z^T \matr{Q} \z + \vec{r}^T \z \min_{\z} \frac{1}{2}\z^T \matr{Q} \z + \vec{r}^T \z
\qquad \qquad
\nabla l = \matr{Q} \z^k + \vec{r} \nabla l = \matr{Q} \z + \vec{r}
\] \]
The gradient method can be reduced to an affine linear system: The gradient method can be reduced to an affine linear system:
\[ \[