mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
Add LAAI3 introduction
This commit is contained in:
1
src/languages-and-algorithms-for-ai/module3/ainotes.cls
Symbolic link
1
src/languages-and-algorithms-for-ai/module3/ainotes.cls
Symbolic link
@ -0,0 +1 @@
|
||||
../../ainotes.cls
|
||||
13
src/languages-and-algorithms-for-ai/module3/laai3.tex
Normal file
13
src/languages-and-algorithms-for-ai/module3/laai3.tex
Normal file
@ -0,0 +1,13 @@
|
||||
\documentclass[11pt]{ainotes}
|
||||
|
||||
\title{Languages and Algorithms for\\Artificial Intelligence\\(Module 3)}
|
||||
\date{2023 -- 2024}
|
||||
\def\lastupdate{{PLACEHOLDER-LAST-UPDATE}}
|
||||
\newcommand{\enc}[1]{{\llcorner{#1}\lrcorner}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\makenotesfront
|
||||
\input{sections/_intro.tex}
|
||||
|
||||
\end{document}
|
||||
@ -0,0 +1,88 @@
|
||||
\chapter{Introduction}
|
||||
|
||||
\begin{description}
|
||||
\item[Computational task] \marginnote{Computational task}
|
||||
Description of a problem.
|
||||
|
||||
\item[Computational process] \marginnote{Computational process}
|
||||
Algorithm to solve a task.
|
||||
|
||||
\begin{description}
|
||||
\item[Algorithm (informal)]
|
||||
A finite description of
|
||||
elementary and deterministic computation steps.
|
||||
\end{description}
|
||||
\end{description}
|
||||
|
||||
|
||||
\section{Notations}
|
||||
|
||||
\begin{description}
|
||||
\item[Set of the first $n$ natural numbers]
|
||||
Given $n \in \mathbb{N}$, we have that $[n] = \{ 1, \dots, n \}$.
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Strings}
|
||||
|
||||
\begin{description}
|
||||
\item[Alphabet] \marginnote{Alphabet}
|
||||
Finite set of symbols.
|
||||
|
||||
\item[String] \marginnote{String}
|
||||
Finite, ordered, and possibly empty tuple of elements of an alphabet.
|
||||
|
||||
The empty string is denoted as $\varepsilon$.
|
||||
|
||||
\item[Strings of given length]
|
||||
Given an alphabet $S$ and $n \in \mathbb{N}$, we denote with $S^n$ the set of all the strings over $S$ of length $n$.
|
||||
|
||||
\item[Kleene star] \marginnote{Kleene star}
|
||||
Given an alphabet $S$, we denote with $S^* = \bigcup_{n=0}^{\infty} S^n$ the set of all the strings over $S$.
|
||||
|
||||
\item[Language] \marginnote{Language}
|
||||
Given an alphabet $S$, a language $\mathcal{L}$ is a subset of $S^*$.
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Tasks encoding}
|
||||
|
||||
\begin{description}
|
||||
\item[Encoding] \marginnote{Encoding}
|
||||
Given a set $A$, any element $x \in A$ can be encoded into a string of the language $\{0, 1\}^*$.
|
||||
The encoding of $x$ is denoted as $\enc{x}$ or simply $x$.
|
||||
|
||||
\item[Task function] \marginnote{Task}
|
||||
Given two countable sets $A$ and $B$ representing the domain,
|
||||
a task can be represented as a function $f: A \rightarrow B$.
|
||||
|
||||
When not stated, $A$ and $B$ are implicitly encoded into $\{0, 1\}^*$.
|
||||
|
||||
\item[Characteristic function] \marginnote{Characteristic function}
|
||||
Boolean function of form $f: \{0, 1\}^* \rightarrow \{0, 1\}$.
|
||||
|
||||
Given a characteristic function $f$, the language $\mathcal{L}_f = \{ x \in \{0, 1\}^* \mid f(x) = 1 \}$
|
||||
can be defined.
|
||||
|
||||
\item[Decision problem] \marginnote{Decision problem}
|
||||
Given a language $\mathcal{M}$, a decision problem is the task of computing a boolean function $f$
|
||||
able to determine if a string belongs to $\mathcal{M}$ (i.e. $\mathcal{L}_f = \mathcal{M}$).
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Asymptotic notation}
|
||||
|
||||
\begin{description}
|
||||
\item[Big O] \marginnote{Big O}
|
||||
A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is $O(g)$ if $g$ is an upper bound of $f$.
|
||||
\[ f \in O(g) \iff \exists \bar{n} \in \mathbb{N} \text{ such that } \forall n > \bar{n}, \exists c \in \mathbb{R}: f(n) \leq c \cdot g(n) \]
|
||||
|
||||
\item[Big Omega] \marginnote{Big Omega}
|
||||
A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is $\Omega(g)$ if $g$ is a lower bound of $f$.
|
||||
\[ f \in \Omega(g) \iff \exists \bar{n} \in \mathbb{N} \text{ such that } \forall n > \bar{n}, \exists c \in \mathbb{R}: f(n) \geq c \cdot g(n) \]
|
||||
|
||||
\item[Big Theta]\marginnote{Big Theta}
|
||||
A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is $\Theta(g)$ if $g$ is both an upper and lower bound of $f$.
|
||||
\[ f \in \Theta(g) \iff f \in O(g) \text{ and } f \in \Omega(g) \]
|
||||
|
||||
\end{description}
|
||||
Reference in New Issue
Block a user