mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-14 18:51:52 +01:00
@ -116,7 +116,7 @@ we can construct a rank-1 matrix (dyad) $\matr{A}_i \in \mathbb{R}^{m \times n}$
|
||||
where $\vec{u}_i \in \mathbb{R}^m$ is the $i$-th column of $\matr{U}$ and
|
||||
$\vec{v}_i \in \mathbb{R}^n$ is the $i$-th column of $\matr{V}$.
|
||||
Then, we can compose $\matr{A}$ as a sum of dyads:
|
||||
\[ \matr{A}_i = \sum_{i=1}^{r} \sigma_i \vec{u}_i \vec{v}_i^T = \sum_{i=1}^{r} \sigma_i \matr{A}_i \]
|
||||
\[ \matr{A} = \sum_{i=1}^{r} \sigma_i \vec{u}_i \vec{v}_i^T = \sum_{i=1}^{r} \sigma_i \matr{A}_i \]
|
||||
|
||||
\marginnote{Rank-$k$ approximation}
|
||||
By considering only the first $k < r$ singular values, we can obtain a rank-$k$ approximation of $\matr{A}$:
|
||||
|
||||
Reference in New Issue
Block a user