Add CN dopamine
BIN
src/cognition-and-neuroscience/img/basal_ganglia_motor.png
Normal file
|
After Width: | Height: | Size: 522 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_blocking.png
Normal file
|
After Width: | Height: | Size: 87 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_expected.png
Normal file
|
After Width: | Height: | Size: 814 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_expected2.png
Normal file
|
After Width: | Height: | Size: 812 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_expected3.png
Normal file
|
After Width: | Height: | Size: 842 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_food_cocaine.png
Normal file
|
After Width: | Height: | Size: 115 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_monkey1.png
Normal file
|
After Width: | Height: | Size: 185 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_monkey2.png
Normal file
|
After Width: | Height: | Size: 87 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_monkey3.png
Normal file
|
After Width: | Height: | Size: 27 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_probability.png
Normal file
|
After Width: | Height: | Size: 344 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_timing.png
Normal file
|
After Width: | Height: | Size: 698 KiB |
BIN
src/cognition-and-neuroscience/img/dopamine_transfer_cs.png
Normal file
|
After Width: | Height: | Size: 1.2 MiB |
BIN
src/cognition-and-neuroscience/img/dopaminergic_pathways.png
Normal file
|
After Width: | Height: | Size: 378 KiB |
|
After Width: | Height: | Size: 38 KiB |
|
After Width: | Height: | Size: 60 KiB |
BIN
src/cognition-and-neuroscience/img/instrumental_dopamine_sn1.png
Normal file
|
After Width: | Height: | Size: 94 KiB |
BIN
src/cognition-and-neuroscience/img/instrumental_dopamine_sn2.png
Normal file
|
After Width: | Height: | Size: 2.5 MiB |
BIN
src/cognition-and-neuroscience/img/pe_location.png
Normal file
|
After Width: | Height: | Size: 170 KiB |
BIN
src/cognition-and-neuroscience/img/rescorla_wagner_curve.png
Normal file
|
After Width: | Height: | Size: 37 KiB |
BIN
src/cognition-and-neuroscience/img/second_order_conditioning.png
Normal file
|
After Width: | Height: | Size: 229 KiB |
|
Before Width: | Height: | Size: 553 KiB After Width: | Height: | Size: 552 KiB |
@ -667,10 +667,10 @@ The \ac{pns} has the following divisions:
|
||||
|
||||
They have a crucial role in motor control and reinforcement learning.
|
||||
This happens through two pathways:
|
||||
\begin{description}
|
||||
\begin{descriptionlist}
|
||||
\item[Direct pathway] When active, it causes the disinhibition of the thalamus and has the consequence of initializing movement.
|
||||
\item[Indirect pathway] When active, it causes the inhibition of the thalamus and consequently inhibits movement.
|
||||
\end{description}
|
||||
\end{descriptionlist}
|
||||
To activate the direct pathway and inhibit the indirect pathway, the substantia nigra pars compacta (SNc) releases the neurotransmitter dopamine.
|
||||
|
||||
\begin{example}[Parkinson's disease]
|
||||
|
||||
@ -501,8 +501,8 @@ Causal relationship between the \acl{cs} and the \acl{us}.
|
||||
\caption{Learning outcome due to surprise}
|
||||
\end{figure}
|
||||
|
||||
\begin{example}
|
||||
\phantom{}\\
|
||||
\begin{example}[Blocking effect]
|
||||
\phantom{} \label{ex:blocking} \\
|
||||
\begin{minipage}{0.65\linewidth}
|
||||
\begin{enumerate}
|
||||
\item A rat is taught that a hissing sound (\ac{cs}) is paired with a sexually receptive mate (\ac{us}).
|
||||
@ -512,10 +512,437 @@ Causal relationship between the \acl{cs} and the \acl{us}.
|
||||
|
||||
The light is not learned as a \ac{cs} as it does not provide any new information on the \ac{us}.
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.3\linewidth}
|
||||
\begin{minipage}{0.35\linewidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/surprise_rats.png}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\end{example}
|
||||
\end{example}
|
||||
|
||||
|
||||
|
||||
\section{Computational model}
|
||||
|
||||
|
||||
\subsection{Rescorla-Wagner model}
|
||||
\marginnote{Rescorla-Wagner model}
|
||||
|
||||
Error-driven learning model where the change expectancy is proportional to the difference between predicted and actual outcome:
|
||||
\[ \delta_{tr} = R_{tr} - V_{tr} \]
|
||||
where:
|
||||
\begin{itemize}
|
||||
\item $\delta_{tr}$ is the prediction error.
|
||||
\item $R_{tr} = \begin{cases}
|
||||
1 & \text{if the \ac{us} is delivered at trial $tr$} \\
|
||||
0 & \text{if the \ac{us} is omitted at trial $tr$}
|
||||
\end{cases}$.
|
||||
\item $V_{tr}$ is the association strength (i.e. expectancy of the \ac{us} or the expected value resulting from a given \ac{cs}) at trial $tr$.
|
||||
\end{itemize}
|
||||
|
||||
Then, the expected value $V_{tr+1}$ is obtained as:
|
||||
\[ V_{tr+1} = V_{tr} + \alpha \delta_{tr} \]
|
||||
where $\alpha \in [0, 1]$ is the learning rate.
|
||||
|
||||
\begin{remark}
|
||||
A lower $\alpha$ is more suited for volatile environments.
|
||||
\end{remark}
|
||||
|
||||
\begin{remark}
|
||||
The prediction error $\delta$ is:
|
||||
\begin{itemize}
|
||||
\item Positive during acquisition.
|
||||
\item Negative during extinction.
|
||||
\end{itemize}
|
||||
Moreover, the error is larger at the start of acquisition/extinction.
|
||||
\end{remark}
|
||||
|
||||
\begin{remark}
|
||||
The Rescorla-Wagner model is able to capture the blocking effect (see \hyperref[ex:blocking]{Blocking example}) as
|
||||
the animal computes a single prediction error obtained as the combination of multiple stimuli.
|
||||
\end{remark}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.4\linewidth]{./img/rescorla_wagner_curve.png}
|
||||
\caption{Acquisition and extinction in Pavlovian learning according to the Rescorla-Wagner model}
|
||||
\end{figure}
|
||||
|
||||
\begin{remark}
|
||||
The Rescorla-Wagner model is a trial-level model that only considers the change from trial to trial
|
||||
without considering what happens within and between trials.
|
||||
\end{remark}
|
||||
|
||||
|
||||
\subsection{Temporal difference model}
|
||||
\marginnote{Temporal difference model}
|
||||
|
||||
Real-time model based on time steps within a trial instead of monolithic trials.
|
||||
At each time $t$ of a trial during which a \ac{cs} is presented,
|
||||
the model computes a prediction of the total future reward that will be gained from time $t$ to the end of the trial.
|
||||
|
||||
The prediction error is computed as follows\footnote{\url{https://pubmed.ncbi.nlm.nih.gov/9054347/}}:
|
||||
\begin{gather*}
|
||||
\delta_t = R_t + V_{t+1} - V_t \\
|
||||
V_{t+1} = V_t + \alpha \delta_t
|
||||
\end{gather*}
|
||||
|
||||
\begin{itemize}
|
||||
\item At the beginning of learning, the \ac{cs} is presented at time $t_\text{\ac{cs}}$
|
||||
and $V_t = 0$ until the \ac{us} is delivered at time $t_\text{\ac{us}} > t_\text{\ac{cs}}$.
|
||||
\item On the next trial, $V_{t_\text{\ac{us}}} - V_{t_\text{\ac{us}} - 1}$ now generates a positive prediction error that updates $V_{t_\text{\ac{us}} - 1}$.
|
||||
\item On subsequent trials, $V_t$ is updated for each $t$ in between $t_\text{\ac{us}}$ back to $t_\text{\ac{cs}}$.
|
||||
\end{itemize}
|
||||
|
||||
In other words, the value signal produced by the reward (\ac{us}) is transferred back to an event (\ac{cs}) that predicts the reward.
|
||||
|
||||
\begin{example}[Second-order conditioning]
|
||||
Pairing a new \ac{cs} to an existing \ac{cs}.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.9\linewidth]{./img/second_order_conditioning.png}
|
||||
\end{center}
|
||||
|
||||
\begin{remark}
|
||||
The Rescorla-Wagner model is not capable of modeling second-order conditioning while
|
||||
the temporal difference model is.
|
||||
\end{remark}
|
||||
\end{example}
|
||||
|
||||
|
||||
|
||||
\section{Dopamine}
|
||||
|
||||
\begin{description}
|
||||
\item[Synaptic plasticity]
|
||||
Change the synaptic efficacy by changing the amount of:
|
||||
\begin{descriptionlist}
|
||||
\item[Neurotransmitters] Directly provoke excitatory or inhibitory effects at postsynaptic neurons.
|
||||
\item[Neuromodulators] Neurotransmitters with additional effects.
|
||||
\end{descriptionlist}
|
||||
\end{description}
|
||||
|
||||
|
||||
\begin{description}
|
||||
\item[Dopamine] \marginnote{Dopamine}
|
||||
Neuromodulator responsible for processes such as motivation, learning, decision-making, addiction, Parkinson's disease, Huntington's disease, \dots.
|
||||
|
||||
\item[Dopaminergic pathways] \marginnote{Dopaminergic pathways}
|
||||
\begin{description}
|
||||
\item[Nigrostriatal pathway]
|
||||
Originates in the substantia nigra pars compacta (SNc)
|
||||
and primarily projects to the caudate-putemen.
|
||||
|
||||
\begin{minipage}{0.6\linewidth}
|
||||
\begin{description}
|
||||
\item[Basal ganglia motor loop]
|
||||
Collection of subcortical nuclei responsible for motor control and reinforcement learning.
|
||||
|
||||
The direct pathway initiates movement while the indirect pathway inhibits it.
|
||||
|
||||
The SNc projects into the striatum and is responsible for releasing dopamine that activates the direct pathway.
|
||||
The striatum can be seen as the component that uses the reward to influence an action.
|
||||
\end{description}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.35\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/basal_ganglia_motor.png}
|
||||
\end{minipage}
|
||||
|
||||
\item[Meso-limbic pathway]
|
||||
Originates in the VTA and projects to the nucleus accumbens, septum, amygdala and hippocampus.
|
||||
|
||||
\item[Meso-cortical pathway]
|
||||
Originates in the VTA and projects to the medial prefrontal, cingulate, orbitofrontal and perirhinal cortex.
|
||||
\end{description}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.3\linewidth]{./img/dopaminergic_pathways.png}
|
||||
\caption{Dopaminergic pathways}
|
||||
\end{figure}
|
||||
\end{description}
|
||||
|
||||
|
||||
\subsection{Reward prediction error hypothesis of dopamine}
|
||||
|
||||
There is strong evidence that the dopaminergic system is the major neural mechanism of reward and reinforcement.
|
||||
|
||||
\begin{description}
|
||||
\item[Response to unexpected rewards] \marginnote{Dopamine response to unexpected rewards}
|
||||
Dopaminergic neurons exhibit a strong phasic response in the presence of an unexpected reward.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey that touches food]
|
||||
Some food is put in a box with a hole to reach its content.
|
||||
In the absence of any other stimuli predicting the reward,
|
||||
a monkey presents a high dopaminergic response when it touches the food.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/dopamine_monkey1.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
|
||||
\item[Reward discrimination] \marginnote{Dopamine reward discrimination}
|
||||
Dopamine neurons respond differently depending on the actual presence of a reward.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey that touches food]
|
||||
The dopaminergic response of a monkey that touches an apple attached to a wire in a box is different
|
||||
from the response of only touching the wire.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/dopamine_monkey2.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
|
||||
\item[Magnitude discrimination] \marginnote{Dopamine magnitude discrimination}
|
||||
Dopamine neurons respond differently depending on the amount of reward received.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey that drinks]
|
||||
By giving a monkey different amounts of fruit juice in a pseudorandom order,
|
||||
its dopaminergic response is stronger for the highest volume and weaker for the lowest volume.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.7\linewidth]{./img/dopamine_monkey3.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey with juice and images]
|
||||
Using different \acp{cs}, it can be seen that the dopaminergic response differs based on the amount of reward.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/dopamine_expected.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey with juice and images]
|
||||
After learning the association between a \ac{cs} and \ac{us} (middle graph), a change in the amount of the reward changes the dopaminergic response.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.6\linewidth]{./img/dopamine_expected2.png}
|
||||
\end{center}
|
||||
|
||||
This behavior also involves the context (i.e. the \ac{cs} image that is shown).
|
||||
\begin{center}
|
||||
\includegraphics[width=0.6\linewidth]{./img/dopamine_expected3.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\end{description}
|
||||
|
||||
\begin{remark}
|
||||
With the previous observations, it can be concluded that:
|
||||
\begin{itemize}
|
||||
\item Dopamine neurons increase their firing rate when the reward is unexpectedly delivered or better than expected.
|
||||
\item Dopamine neurons decrease their firing rate when the reward is unexpectedly omitted or worse than expected.
|
||||
\end{itemize}
|
||||
\end{remark}
|
||||
|
||||
\begin{description}
|
||||
\item[Transfer to \ac{cs}] \marginnote{Dopamine transfer to \ac{cs}}
|
||||
\phantom{} \\
|
||||
\begin{minipage}{0.65\linewidth}
|
||||
\begin{itemize}[leftmargin=*]
|
||||
\item Before training, an unexpected reward (\ac{us}) causes the dopamine neurons to increase firing (positive prediction error).
|
||||
\item After training, dopamine neurons firing is increased after the \ac{cs} but not following the reward (no prediction error).
|
||||
\item After training, dopamine neurons firing is increased after the \ac{cs} but is decreased if the reward is omitted (negative prediction error).
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.35\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/dopamine_transfer_cs.png}
|
||||
\end{minipage}
|
||||
|
||||
\item[Response to blocking] \marginnote{Dopamine response to blocking}
|
||||
Dopaminergic response is in line with the blocking effect.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Monkey with food and images]
|
||||
\phantom{}\\
|
||||
\begin{minipage}{0.7\linewidth}
|
||||
A monkey is taught to associate images with food.
|
||||
A new \ac{cs} alongside an existing \ac{cs} will not be learned.
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.28\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/dopamine_blocking.png}
|
||||
\end{minipage}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
|
||||
\item[Probability encoding] \marginnote{Dopamine probability encoding}
|
||||
\phantom{} \\
|
||||
\begin{minipage}{0.45\linewidth}
|
||||
The phasic activation of dopamine neurons varies monotonically with the reward probability
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=0.85\linewidth]{./img/dopamine_probability.png}
|
||||
\end{minipage}
|
||||
|
||||
\item[Timing encoding] \marginnote{Dopamine timing encoding}
|
||||
Dopamine response to unexpectedness also involves timing.
|
||||
A dopaminergic response occurs when a reward is given earlier or later than expected.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}
|
||||
After learning that a reward occurs 1 second after the end of the \ac{cs},
|
||||
dopamine neurons fire if the timing changes.
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/dopamine_timing.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
\end{description}
|
||||
|
||||
\begin{remark}
|
||||
Dopamine is therefore a signal for the predicted error and not strictly for the reward.
|
||||
\end{remark}
|
||||
|
||||
|
||||
\subsection{Dopamine in instrumental learning}
|
||||
|
||||
There is evidence that dopamine is involved in learning action-outcome associations (instrumental learning).
|
||||
|
||||
\begin{description}
|
||||
\item[Striatal activity on unexpected events] \marginnote{Striatal activity on unexpected events}
|
||||
When an unexpected event happens, there is a change in the activity of the striatum.
|
||||
There is an increase in response when the feedback is positive and a decrease when negative.
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Microelectrodes in substantia nigra]
|
||||
The activity of the substantia nigra of patients with Parkinson's disease is measured during a probabilistic instrumental learning task.
|
||||
The task consists of repeatedly drawing a card from two decks, followed by positive or negative feedback depending on the deck.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\begin{subfigure}{0.25\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/instrumental_dopamine_sn1.png}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.55\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{./img/instrumental_dopamine_sn2.png}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
|
||||
The increase and decrease in striatal activity can be clearly seen when the feedback is unexpected.
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
|
||||
\item[Dopamine effect on behavior] \marginnote{Dopamine effect on behavior}
|
||||
The amount of dopamine changes the learning behavior:
|
||||
\begin{itemize}
|
||||
\item Low levels of dopamine cause an impairment in learning from positive feedback.
|
||||
This happens because positive prediction errors cannot occur.
|
||||
|
||||
\item High levels of dopamine cause an impairment in learning from negative feedback.
|
||||
This happens because negative prediction errors cannot occur.
|
||||
\end{itemize}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Probabilistic selection task]
|
||||
This instrumental learning task has two phases:
|
||||
\begin{descriptionlist}
|
||||
\item[Learning]
|
||||
There are three pairs of stimuli (symbols) and, at each trial, a pair is presented to the participant who selects one.
|
||||
For each pair, a symbol has a higher probability of providing positive feedback while the other is more likely to be negative.
|
||||
Moreover, the probabilities are different among the three pairs.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/instrumental_dopamine_selection1.png}
|
||||
\end{center}
|
||||
|
||||
Participants are required to learn by trial and error the stimulus in each pair that leads to a positive reward.
|
||||
Note that learning could be accomplished by:
|
||||
\begin{itemize}
|
||||
\item Recognizing the more rewarding stimulus.
|
||||
\item Recognizing the less rewarding stimulus.
|
||||
\item Both.
|
||||
\end{itemize}
|
||||
|
||||
\item[Testing]
|
||||
Aims to assess if participants learned to select positive feedback or avoid negative feedback.
|
||||
|
||||
The same task as above is repeated but all combinations of the stimuli among the three pairs are possible.
|
||||
\end{descriptionlist}
|
||||
|
||||
Three groups of participants are considered for this experiment:
|
||||
\begin{enumerate}
|
||||
\item Those who took the cabergoline drug (dopamine antagonist).
|
||||
\item Those who took the haloperidol drug (dopamine agonist).
|
||||
\item Those who took a drug without effects (placebo).
|
||||
\end{enumerate}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.55\linewidth]{./img/instrumental_dopamine_selection2.png}
|
||||
\end{center}
|
||||
|
||||
Results show that:
|
||||
\begin{enumerate}
|
||||
\item Cabergoline inhibited positive feedback learning.
|
||||
\item Haloperidol enhanced positive feedback learning.
|
||||
\item Placebo learned positive and negative feedback equally.
|
||||
\end{enumerate}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}
|
||||
It has been observed that:
|
||||
\begin{itemize}
|
||||
\item Reward prediction errors are correlated with activity in the left posterior putamen and left ventral striatum.
|
||||
\item Punishment prediction errors are correlated with activity in the right anterior insula.
|
||||
\end{itemize}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\linewidth]{./img/pe_location.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||
|
||||
\item[Actor-critic model] \marginnote{Actor-critic model}
|
||||
Model to correlate Pavlovian and instrumental learning.
|
||||
It is composed by:
|
||||
\begin{itemize}
|
||||
\item The cortex is responsible for representing the current state.
|
||||
\item The basal ganglia implement two computational models:
|
||||
\begin{descriptionlist}
|
||||
\item[Critic] \marginnote{Critic}
|
||||
Learns stimulus-outcome associations and is active in both Pavlovian and instrumental learning.
|
||||
It might be implemented in the ventral striatum, the amygdala and the orbitofrontal cortex.
|
||||
|
||||
\item[Actor] \marginnote{Actor}
|
||||
Learns stimulus-action associations and is only active during instrumental learning.
|
||||
It might be implemented in the dorsal striatum.
|
||||
\end{descriptionlist}
|
||||
\end{itemize}
|
||||
\end{description}
|
||||
|
||||
\begin{@empty}
|
||||
\small
|
||||
\begin{example}[Food and cocaine]
|
||||
\phantom{}
|
||||
\begin{itemize}
|
||||
\item Food-induced dopamine response is modulated by the reward expectations that promote learning until the prediction matches the actual outcome.
|
||||
\item Cocaine-induced dopamine response causes a continuous increase in the predicted reward that
|
||||
will eventually surpass all other cues and bias decision-making towards cocaine.
|
||||
\end{itemize}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.7\linewidth]{./img/dopamine_food_cocaine.png}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\end{@empty}
|
||||