mirror of
https://github.com/NotXia/unibo-ai-notes.git
synced 2025-12-15 19:12:22 +01:00
Add FAIKR2 propositional and first order logic
This commit is contained in:
1
src/fundamentals-of-ai-and-kr/module2/ainotes.cls
Symbolic link
1
src/fundamentals-of-ai-and-kr/module2/ainotes.cls
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../ainotes.cls
|
||||||
11
src/fundamentals-of-ai-and-kr/module2/main.tex
Normal file
11
src/fundamentals-of-ai-and-kr/module2/main.tex
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
\documentclass[11pt]{ainotes}
|
||||||
|
|
||||||
|
\title{Fundamentals of Artificial Intelligence and Knowledge Representation\\(Module 2)}
|
||||||
|
\date{2023 -- 2024}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\makenotesfront
|
||||||
|
\input{sections/_logic.tex}
|
||||||
|
|
||||||
|
\end{document}
|
||||||
@ -0,0 +1,3 @@
|
|||||||
|
\chapter{Propositional and first order logic}
|
||||||
|
|
||||||
|
See \href{https://github.com/NotXia/unibo-ai-notes/tree/pdfs/languages-and-algorithms-for-ai/module2}{\texttt{Languages and Algorithms for AI (module 2)}}.
|
||||||
@ -7,5 +7,6 @@
|
|||||||
|
|
||||||
\makenotesfront
|
\makenotesfront
|
||||||
\include{sections/_propositional_logic.tex}
|
\include{sections/_propositional_logic.tex}
|
||||||
|
\include{sections/_first_order_logic.tex}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
@ -0,0 +1,44 @@
|
|||||||
|
\chapter{First order logic}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Syntax}
|
||||||
|
\marginnote{Syntax}
|
||||||
|
The symbols of propositional logic are:
|
||||||
|
\begin{descriptionlist}
|
||||||
|
\item[Constants]
|
||||||
|
Known elements of the domain. Do not represent truth values.
|
||||||
|
|
||||||
|
\item[Variables]
|
||||||
|
Unknown elements of the domain. Do not represent truth values.
|
||||||
|
|
||||||
|
\item[Function symbols]
|
||||||
|
Function $f^{(n)}$ applied on $n$ constants to obtain another constant.
|
||||||
|
|
||||||
|
\item[Predicate symbols]
|
||||||
|
Function $P^{(n)}$ applied on $n$ constants to obtain a truth value.
|
||||||
|
|
||||||
|
\item[Connectives] $\forall$ $\exists$ $\land$ $\vee$ $\rightarrow$ $\lnot$ $\leftrightarrow$ $\bot$ $($ $)$
|
||||||
|
\end{descriptionlist}
|
||||||
|
|
||||||
|
Using the basic syntax, the following constructs can be defined:
|
||||||
|
\begin{descriptionlist}
|
||||||
|
\item[Term] Denotes elements of the domain.
|
||||||
|
\[ t := \texttt{constant} \,|\, \texttt{variable} \,|\, f^{(n)}(t_1, \dots, t_n) \]
|
||||||
|
|
||||||
|
\item[Proposition] Denotes truth values.
|
||||||
|
\[
|
||||||
|
P := \bot \,|\, P \land P \,|\, P \vee P \,|\, P \rightarrow P \,|\, P \leftrightarrow P \,|\,
|
||||||
|
\lnot P \,|\, \forall x. P \,|\, \exists x. P \,|\, (P) \,|\, P^{(n)}(t_1, \dots, t_n)
|
||||||
|
\]
|
||||||
|
\end{descriptionlist}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[Well-formed formula] \marginnote{Well-formed formula}
|
||||||
|
The definition of well-formed formula in first order logic extends the one of
|
||||||
|
propositional logic by adding the following conditions:
|
||||||
|
\begin{itemize}
|
||||||
|
\item If S is well-formed, $\exists X. S$ is well-formed. Where $X$ is a variable.
|
||||||
|
\item If S is well-formed, $\forall X. S$ is well-formed. Where $X$ is a variable.
|
||||||
|
\end{itemize}
|
||||||
|
\end{description}
|
||||||
@ -3,14 +3,13 @@
|
|||||||
\section{Syntax}
|
\section{Syntax}
|
||||||
\begin{description}
|
\begin{description}
|
||||||
\item[Syntax] \marginnote{Syntax}
|
\item[Syntax] \marginnote{Syntax}
|
||||||
Rules and symbols to define well formed sentences.
|
Rules and symbols to define well-formed sentences.
|
||||||
\end{description}
|
\end{description}
|
||||||
|
|
||||||
The symbols of propositional logic are:
|
The symbols of propositional logic are:
|
||||||
\begin{descriptionlist}
|
\begin{descriptionlist}
|
||||||
\item[Proposition symbols] $p_0$, $p_1$, \dots
|
\item[Proposition symbols] $p_0$, $p_1$, \dots
|
||||||
\item[Connectives] $\land$, $\vee$, $\rightarrow$, $\lnot$, $\leftrightarrow$, $\bot$
|
\item[Connectives] $\land$ $\vee$ $\rightarrow$ $\leftrightarrow$ $\lnot$ $\bot$ $($ $)$
|
||||||
\item[Auxiliary symbols] $($ and $)$
|
|
||||||
\end{descriptionlist}
|
\end{descriptionlist}
|
||||||
|
|
||||||
\begin{description}
|
\begin{description}
|
||||||
@ -24,28 +23,31 @@ The symbols of propositional logic are:
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
Note that the implication $S_1 \rightarrow S_2$ can be written as $\lnot S_1 \vee S_2$.
|
Note that the implication $S_1 \rightarrow S_2$ can be written as $\lnot S_1 \vee S_2$.
|
||||||
|
|
||||||
|
The BNF definition of a formula is:
|
||||||
|
\[
|
||||||
|
F := \texttt{atomic\_proposition} \,|\, F \land F \,|\, F \vee F \,|\,
|
||||||
|
F \rightarrow F \,|\, F \leftrightarrow F \,|\, \lnot F \,|\, (F)
|
||||||
|
\]
|
||||||
|
% \[
|
||||||
|
% \begin{split}
|
||||||
|
% \texttt{<formula>} :=\,\, &\texttt{atomic\_proposition} \,|\,\\
|
||||||
|
% &\lnot \texttt{<formula>} \,|\, \\
|
||||||
|
% &\texttt{<formula>} \land \texttt{<formula>} \,|\, \\
|
||||||
|
% &\texttt{<formula>} \vee \texttt{<formula>} \,|\, \\
|
||||||
|
% &\texttt{<formula>} \rightarrow \texttt{<formula>} \,|\, \\
|
||||||
|
% &\texttt{<formula>} \leftrightarrow \texttt{<formula>} \,|\, \\
|
||||||
|
% &(\texttt{<formula>}) \\
|
||||||
|
% \end{split}
|
||||||
|
% \]
|
||||||
\end{description}
|
\end{description}
|
||||||
|
|
||||||
\subsection{Propositional logic BNF}
|
|
||||||
\[
|
|
||||||
\begin{split}
|
|
||||||
\texttt{<formula>} :=\,\, &\texttt{atomic\_proposition} \,|\,\\
|
|
||||||
&\lnot \texttt{<formula>} \,|\, \\
|
|
||||||
&\texttt{<formula>} \land \texttt{<formula>} \,|\, \\
|
|
||||||
&\texttt{<formula>} \vee \texttt{<formula>} \,|\, \\
|
|
||||||
&\texttt{<formula>} \rightarrow \texttt{<formula>} \,|\, \\
|
|
||||||
&\texttt{<formula>} \leftrightarrow \texttt{<formula>} \,|\, \\
|
|
||||||
&(\texttt{<formula>}) \\
|
|
||||||
\end{split}
|
|
||||||
\]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\section{Semantics}
|
\section{Semantics}
|
||||||
|
|
||||||
\begin{description}
|
\begin{description}
|
||||||
\item[Semantics] \marginnote{Semantics}
|
\item[Semantics] \marginnote{Semantics}
|
||||||
Rules to associate a meaning to well formed sentences.
|
Rules to associate a meaning to well-formed sentences.
|
||||||
\begin{descriptionlist}
|
\begin{descriptionlist}
|
||||||
\item[Model theory] What is true.
|
\item[Model theory] What is true.
|
||||||
\item[Proof theory] What is provable.
|
\item[Proof theory] What is provable.
|
||||||
@ -55,33 +57,21 @@ The symbols of propositional logic are:
|
|||||||
\begin{description}
|
\begin{description}
|
||||||
\item[Interpretation] \marginnote{Interpretation}
|
\item[Interpretation] \marginnote{Interpretation}
|
||||||
Given a propositional formula $F$ of $n$ atoms $ \{ A_1, \dots, A_n \}$,
|
Given a propositional formula $F$ of $n$ atoms $ \{ A_1, \dots, A_n \}$,
|
||||||
an interpretation $I$ of $F$ is an assignment of truth values to $\{ A_1, \dots, A_n \}$.
|
an interpretation $\mathcal{I}$ of $F$ is is a pair $(D, I)$ where:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $D$ is the domain. Truth values in the case of propositional logic.
|
||||||
|
\item $I$ is the interpretation mapping that assigns
|
||||||
|
to the atoms $\{ A_1, \dots, A_n \}$ an element of $D$.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
Note: given a formula $F$ of $n$ distinct atoms, there are $2^n$ district interpretations.
|
Note: given a formula $F$ of $n$ distinct atoms, there are $2^n$ district interpretations.
|
||||||
|
|
||||||
\begin{description}
|
\begin{description}
|
||||||
\item[Model] \marginnote{Model}
|
\item[Model] \marginnote{Model}
|
||||||
If $F$ is true under the interpretation $I$,
|
If $F$ is true under the interpretation $\mathcal{I}$,
|
||||||
we say that $I$ is a model of $F$ ($I \models F$).
|
we say that $\mathcal{I}$ is a model of $F$ ($\mathcal{I} \models F$).
|
||||||
\end{description}
|
\end{description}
|
||||||
|
|
||||||
|
|
||||||
\item[Truth table] \marginnote{Truth table}
|
|
||||||
Useful to define the semantics of connectives.
|
|
||||||
\begin{itemize}
|
|
||||||
\item $\lnot S$ is true iff $S$ is false.
|
|
||||||
\item $S_1 \land S_2$ is true iff $S_1$ is true and $S_2$ is true.
|
|
||||||
\item $S_1 \vee S_2$ is true iff $S_1$ is true or $S_2$ is true.
|
|
||||||
\item $S_1 \rightarrow S_2$ is true iff $S_1$ is false or $S_2$ is true.
|
|
||||||
\item $S_1 \leftrightarrow S_2$ is true iff $S_1 \rightarrow S_2$ is true and $S_1 \leftarrow S_2$ is true.
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
|
|
||||||
\item[Evaluation] \marginnote{Evaluation order}
|
|
||||||
The connectives of a propositional formula are evaluated in the order:
|
|
||||||
\[ \leftrightarrow, \rightarrow, \vee, \land, \lnot \]
|
|
||||||
Formulas in parenthesis have higher priority.
|
|
||||||
|
|
||||||
\item[Valid formula] \marginnote{Valid formula}
|
\item[Valid formula] \marginnote{Valid formula}
|
||||||
A formula $F$ is valid (tautology) iff it is true in all the possible interpretations.
|
A formula $F$ is valid (tautology) iff it is true in all the possible interpretations.
|
||||||
It is denoted as $\models F$.
|
It is denoted as $\models F$.
|
||||||
@ -100,21 +90,40 @@ The symbols of propositional logic are:
|
|||||||
In other words, there is at least an interpretation where $F$ is true.
|
In other words, there is at least an interpretation where $F$ is true.
|
||||||
|
|
||||||
\item[Decidability] \marginnote{Decidability}
|
\item[Decidability] \marginnote{Decidability}
|
||||||
A propositional formula is decidable if there is a terminating method to decide if it is valid.
|
A logic is decidable if there is a terminating method to decide if a formula is valid.
|
||||||
|
|
||||||
|
Propositional logic is decidable.
|
||||||
|
|
||||||
|
\item[Truth table] \marginnote{Truth table}
|
||||||
|
Useful to define the semantics of connectives.
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\lnot S$ is true iff $S$ is false.
|
||||||
|
\item $S_1 \land S_2$ is true iff $S_1$ is true and $S_2$ is true.
|
||||||
|
\item $S_1 \vee S_2$ is true iff $S_1$ is true or $S_2$ is true.
|
||||||
|
\item $S_1 \rightarrow S_2$ is true iff $S_1$ is false or $S_2$ is true.
|
||||||
|
\item $S_1 \leftrightarrow S_2$ is true iff $S_1 \rightarrow S_2$ is true and $S_1 \leftarrow S_2$ is true.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
\item[Evaluation] \marginnote{Evaluation order}
|
||||||
|
The connectives of a propositional formula are evaluated in the order:
|
||||||
|
\[ \leftrightarrow, \rightarrow, \vee, \land, \lnot \]
|
||||||
|
Formulas in parenthesis have higher priority.
|
||||||
|
|
||||||
\item[Logical consequence] \marginnote{Logical consequence}
|
\item[Logical consequence] \marginnote{Logical consequence}
|
||||||
Let $\Gamma = \{F_1, \dots, F_n\}$ be a set of formulas and $G$ a formula.
|
Let $\Gamma = \{F_1, \dots, F_n\}$ be a set of formulas (premises) and $G$ a formula (conclusion).
|
||||||
$G$ is a logical consequence of $\Gamma$ ($\Gamma \models G$)
|
$G$ is a logical consequence of $\Gamma$ ($\Gamma \models G$)
|
||||||
if in all the possible interpretations $I$,
|
if in all the possible interpretations $\mathcal{I}$,
|
||||||
if $F_1 \land \dots \land F_n$ is true, $G$ is true.
|
if $F_1 \land \dots \land F_n$ is true, $G$ is true.
|
||||||
|
|
||||||
\item[Logical equivalence] \marginnote{Logical equivalence}
|
\item[Logical equivalence] \marginnote{Logical equivalence}
|
||||||
Two formulas $F$ and $G$ are logically equivalent ($F \equiv G$) iff the truth values of $F$ and $G$
|
Two formulas $F$ and $G$ are logically equivalent ($F \equiv G$) iff the truth values of $F$ and $G$
|
||||||
are the same under the same interpretation.
|
are the same under the same interpretation.
|
||||||
In other words, $F \models G$ and $G \models F$.
|
In other words, $F \equiv G \iff F \models G \land G \models F$.
|
||||||
|
|
||||||
Common equivalences are:
|
Common equivalences are:
|
||||||
\begin{descriptionlist}
|
\begin{descriptionlist}
|
||||||
|
\footnotesize
|
||||||
\item[Commutativity]: $(P \land Q) \equiv (Q \land P)$ and $(P \vee Q) \equiv (Q \vee P)$
|
\item[Commutativity]: $(P \land Q) \equiv (Q \land P)$ and $(P \vee Q) \equiv (Q \vee P)$
|
||||||
\item[Associativity]: $((P \land Q) \land R) \equiv (P \land (Q \land R))$
|
\item[Associativity]: $((P \land Q) \land R) \equiv (P \land (Q \land R))$
|
||||||
and $((P \vee Q) \vee R) \equiv (P \vee (Q \vee R))$
|
and $((P \vee Q) \vee R) \equiv (P \vee (Q \vee R))$
|
||||||
@ -128,56 +137,15 @@ The symbols of propositional logic are:
|
|||||||
\end{descriptionlist}
|
\end{descriptionlist}
|
||||||
\end{description}
|
\end{description}
|
||||||
|
|
||||||
\begin{theorem}[Deduction] \marginnote{Deduction theorem}
|
|
||||||
Given a set of formulas $\{ F_1, \dots, F_n \}$ and a formula $G$:
|
|
||||||
\[ (F_1 \land \dots \land F_n) \models G \,\iff\, \models (F_1 \land \dots \land F_n) \rightarrow G \]
|
|
||||||
|
|
||||||
\begin{proof} \phantom{}
|
|
||||||
\begin{description}
|
|
||||||
\item[$\rightarrow$])
|
|
||||||
By hypothesis $(F_1 \land \dots \land F_n) \models G$.
|
|
||||||
|
|
||||||
So, for each interpretation $I$ in which $(F_1 \land \dots \land F_n)$ is true, $G$ is also true.
|
|
||||||
Therefore, $I \models (F_1 \land \dots \land F_n) \rightarrow G$.
|
|
||||||
|
|
||||||
Moreover, for each interpretation $I'$ in which $(F_1 \land \dots \land F_n)$ is false,
|
|
||||||
$(F_1 \land \dots \land F_n) \rightarrow G$ is true.
|
|
||||||
Therefore, $I' \models (F_1 \land \dots \land F_n) \rightarrow G$.
|
|
||||||
|
|
||||||
In conclusion, $\models (F_1 \land \dots \land F_n) \rightarrow G$.
|
|
||||||
|
|
||||||
\item[$\leftarrow$])
|
|
||||||
By hypothesis $\models (F_1 \land \dots \land F_n) \rightarrow G$.
|
|
||||||
Therefore, for each interpretation where $(F_1 \land \dots \land F_n)$ is true,
|
|
||||||
$G$ is also true.
|
|
||||||
|
|
||||||
In conclusion, $(F_1 \land \dots \land F_n) \models G$.
|
|
||||||
\end{description}
|
|
||||||
\end{proof}
|
|
||||||
\end{theorem}
|
|
||||||
|
|
||||||
\begin{theorem}[Refutation] \marginnote{Refutation theorem}
|
|
||||||
Given a set of formulas $\{ F_1, \dots, F_n \}$ and a formula $G$:
|
|
||||||
\[ (F_1 \land \dots \land F_n) \models G \,\iff\, F_1 \land \dots \land F_n \land \lnot G \text{ is inconsistent} \]
|
|
||||||
|
|
||||||
Note: this theorem is not accepted in intuitionistic logic.
|
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
By definition, $(F_1 \land \dots \land F_n) \models G$ iff for every interpretation where
|
|
||||||
$(F_1 \land \dots \land F_n)$ is true, $G$ is also true.
|
|
||||||
This requires that there are no interpretations where $(F_1 \land \dots \land F_n)$ is true and $G$ false.
|
|
||||||
In other words, it requires that $(F_1 \land \dots \land F_n \land \lnot G)$ is inconsistent.
|
|
||||||
\end{proof}
|
|
||||||
\end{theorem}
|
|
||||||
|
|
||||||
|
|
||||||
\subsection{Normal forms}
|
\subsection{Normal forms}
|
||||||
|
|
||||||
\begin{description}
|
\begin{description}
|
||||||
\item[Negation normal form (NNF)] \marginnote{Negation normal form}
|
\item[Negation normal form (NNF)] \marginnote{Negation normal form}
|
||||||
A formula is in negation normal form iff negations appears only in front of atoms (i.e. not parenthesis).
|
A formula is in negation normal form iff negations appear only in front of atoms (i.e. not parenthesis).
|
||||||
|
|
||||||
\item[Conjunctive normal form (CNF)] \marginnote{Conjunctive normal form}
|
\item[Conjunctive normal form (CNF)] \marginnote{Conjunctive normal form}
|
||||||
A formula $F$ is in conjunctive normal form iff
|
A formula $F$ is in conjunctive normal form iff:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item it is in negation normal form;
|
\item it is in negation normal form;
|
||||||
\item it has the form $F := F_1 \land F_2 \dots \land F_n$, where each $F_i$ (clause) is a disjunction of literals.
|
\item it has the form $F := F_1 \land F_2 \dots \land F_n$, where each $F_i$ (clause) is a disjunction of literals.
|
||||||
@ -189,19 +157,87 @@ The symbols of propositional logic are:
|
|||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
\item[Disjunctive normal form (DNF)] \marginnote{Disjunctive normal form}
|
\item[Disjunctive normal form (DNF)] \marginnote{Disjunctive normal form}
|
||||||
A formula $F$ is in disjunctive normal form iff
|
A formula $F$ is in disjunctive normal form iff:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item it is in negation normal form;
|
\item it is in negation normal form;
|
||||||
\item it has the form $F := F_1 \vee F_2 \dots \vee F_n$, where each $F_i$ is a conjunction of literals.
|
\item it has the form $F := F_1 \vee F_2 \dots \vee F_n$, where each $F_i$ is a conjunction of literals.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{description}
|
\end{description}
|
||||||
|
|
||||||
\section{Natural deduction}
|
|
||||||
|
|
||||||
|
|
||||||
|
\section{Reasoning}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[Reasoning method] \marginnote{Reasoning method}
|
||||||
|
Systems to work with symbols.
|
||||||
|
|
||||||
|
Given a set of formulas $\Gamma$, a formula $F$ and a reasoning method $E$,
|
||||||
|
we denote with $\Gamma \vdash^E F$ the fact that $F$ can be deduced from $\Gamma$
|
||||||
|
using the reasoning method $E$.
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
|
\item[Sound] \marginnote{Soundness}
|
||||||
|
A reasoning method $E$ is sound iff:
|
||||||
|
\[ (\Gamma \vdash^E F) \rightarrow (\Gamma \models F) \]
|
||||||
|
|
||||||
|
\item[Complete] \marginnote{Completeness}
|
||||||
|
A reasoning method $E$ is complete iff:
|
||||||
|
\[ (\Gamma \models F) \rightarrow (\Gamma \vdash^E F) \]
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
\item[Deduction theorem] \marginnote{Deduction theorem}
|
||||||
|
Given a set of formulas $\{ F_1, \dots, F_n \}$ and a formula $G$:
|
||||||
|
\[ (F_1 \land \dots \land F_n) \models G \,\iff\, \models (F_1 \land \dots \land F_n) \rightarrow G \]
|
||||||
|
|
||||||
|
\begin{proof} \phantom{}
|
||||||
|
\begin{description}
|
||||||
|
\item[$\rightarrow$])
|
||||||
|
By hypothesis $(F_1 \land \dots \land F_n) \models G$.
|
||||||
|
|
||||||
|
So, for each interpretation $\mathcal{I}$ in which $(F_1 \land \dots \land F_n)$ is true,
|
||||||
|
$G$ is also true.
|
||||||
|
Therefore, $\mathcal{I} \models (F_1 \land \dots \land F_n) \rightarrow G$.
|
||||||
|
|
||||||
|
Moreover, for each interpretation $\mathcal{I}'$ in which $(F_1 \land \dots \land F_n)$ is false,
|
||||||
|
$(F_1 \land \dots \land F_n) \rightarrow G$ is true.
|
||||||
|
Therefore, $\mathcal{I}' \models (F_1 \land \dots \land F_n) \rightarrow G$.
|
||||||
|
|
||||||
|
In conclusion, $\models (F_1 \land \dots \land F_n) \rightarrow G$.
|
||||||
|
|
||||||
|
\item[$\leftarrow$])
|
||||||
|
By hypothesis $\models (F_1 \land \dots \land F_n) \rightarrow G$.
|
||||||
|
Therefore, for each interpretation where $(F_1 \land \dots \land F_n)$ is true,
|
||||||
|
$G$ is also true.
|
||||||
|
|
||||||
|
In conclusion, $(F_1 \land \dots \land F_n) \models G$.
|
||||||
|
\end{description}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\item[Refutation theorem] \marginnote{Refutation theorem}
|
||||||
|
Given a set of formulas $\{ F_1, \dots, F_n \}$ and a formula $G$:
|
||||||
|
\[ (F_1 \land \dots \land F_n) \models G \,\iff\, F_1 \land \dots \land F_n \land \lnot G \text{ is inconsistent} \]
|
||||||
|
|
||||||
|
Note: this theorem is not accepted in intuitionistic logic.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
By definition, $(F_1 \land \dots \land F_n) \models G$ iff for every interpretation where
|
||||||
|
$(F_1 \land \dots \land F_n)$ is true, $G$ is also true.
|
||||||
|
This requires that there are no interpretations where $(F_1 \land \dots \land F_n)$ is true and $G$ false.
|
||||||
|
In other words, it requires that $(F_1 \land \dots \land F_n \land \lnot G)$ is inconsistent.
|
||||||
|
\end{proof}
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Natural deduction}
|
||||||
\begin{description}
|
\begin{description}
|
||||||
\item[Proof theory] \marginnote{Proof theory}
|
\item[Proof theory] \marginnote{Proof theory}
|
||||||
Set of rules that allows to derive conclusions from premises by exploiting syntactic manipulations.
|
Set of rules that allows to derive conclusions from premises by exploiting syntactic manipulations.
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
\begin{description}
|
||||||
\item[Natural deduction] \marginnote{Natural deduction for propositional logic}
|
\item[Natural deduction] \marginnote{Natural deduction for propositional logic}
|
||||||
Set of rules to introduce or eliminate connectives.
|
Set of rules to introduce or eliminate connectives.
|
||||||
We consider a subset $\{ \land, \rightarrow, \bot \}$ of functionally complete connectives.
|
We consider a subset $\{ \land, \rightarrow, \bot \}$ of functionally complete connectives.
|
||||||
|
|||||||
Reference in New Issue
Block a user