From 0adfef313a5b0df68ffbb304bbab5a005dba3ef1 Mon Sep 17 00:00:00 2001 From: NotXia <35894453+NotXia@users.noreply.github.com> Date: Sat, 15 Jun 2024 14:19:41 +0200 Subject: [PATCH] Typo --- .../module3/sections/_computational_learning.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/year1/languages-and-algorithms-for-ai/module3/sections/_computational_learning.tex b/src/year1/languages-and-algorithms-for-ai/module3/sections/_computational_learning.tex index d87b52d..1f71733 100644 --- a/src/year1/languages-and-algorithms-for-ai/module3/sections/_computational_learning.tex +++ b/src/year1/languages-and-algorithms-for-ai/module3/sections/_computational_learning.tex @@ -233,7 +233,7 @@ In other words, a point is misclassified if it is in $R$ but not in $T$ or vice We want to prove that: \begin{equation} \label{eq:rect_points_to_error} \begin{aligned} - \forall i: \left( \parbox{2.7cm}{Some red points in the training data is in $F_i$} \right) &\Rightarrow + \forall i: \left( \parbox{2.7cm}{Some red points in the training data are in $F_i$} \right) &\Rightarrow E_i \subseteq F_i \\ & \Rightarrow \mathcal{P}_{x \sim \mathcal{D}}[x \in E_i] \leq \mathcal{P}_{x \sim \mathcal{D}}[x \in F_i] \\ & \Rightarrow \mathcal{P}_{x \sim \mathcal{D}}[x \in E_i] \leq \frac{\varepsilon}{4}